首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
结构顺横风振综合被动控制的研究   总被引:2,自引:0,他引:2  
在强风作用下,结构既可在两主轴方向产生顺风向风振,同时在两主轴之一产生顺风向风振时,另一主轴方向可产生横风向风振,当横风向结构自振频率与涡流频率一致时,可产生远大于顺风向风振的共振响应,因此在两主轴方向刚度等相差不大的情况下,两主轴方向在振动控制研究中都必须予以注意,文中采用交叉型被动阻尼器,为了充分发挥阻尼器的作用,采用作者建议的互通式管式液体阻尼器来代替单向的管式液体阻尼器,质量阻尼器也沿主轴  相似文献   

2.
针对悬索桥近塔处吊索突出的风振问题,开展桥塔尾流区长吊索风振特性及其影响因素研究.基于嵌套网格技术,建立桥塔尾流区长吊索计算流体动力学分析模型,开展了长吊索风振特性分析,并研究了吊索与桥塔距离、吊索阻尼比、折算风速等因素对桥塔尾流区吊索风振响应的影响.研究结果表明,桥塔截面尺寸较大,旋涡脱落频率低,易使长吊索发生大幅振动,且横风向振动尤为显著;塔后吊索横风向振幅随距桥塔的距离呈现先增加后减小的规律;增加阻尼比可有效抑制桥塔尾流区吊索振动响应,对横风向振动的抑振效果比顺风向振动更为明显;主塔尾流引起的长吊索风振响应随折算风速的增加呈现先增大后减小的规律,且当折算风速在4.5~5.5之间时振动最为显著.  相似文献   

3.
多层冷弯薄壁型钢结构房屋属于风敏感结构,为研究基本风压及风向角等因素对该结构房屋风致响应的影响,对某4层房屋缩尺气弹性模型进行了风洞试验。结果表明:随风向角增加,顶层侧移先增大后减小,风向角为90°时又增大,且为横风向振动所致,但仅当风压达到1.18 kN/m2后顶层侧移才超限,在风向角为45°时各层层间侧移均超限;随风向角增加,加速度先减小后增大,在0°和90°时来流引起的横风向振动对加速度影响明显,当基本风压大于0.6 kN/m2时,建议采用增加阻尼等措施减小加速度过大带来的振动问题;随偏角增加加速度呈非线性变化,功率谱中高阶振型贡献明显,在风致加速度响应计算中应对高阶振动给予更多考虑,且自振频率应避开加速度峰值段的频率。  相似文献   

4.
基于中、日、澳3国规范中风荷载计算方法,分别对总高度为300 m、200 m的高层建筑顺风向和横风向风荷载进行分析,对比计算结果,利用中日规范对一实际工程风荷载及风振响应进行求解,与风洞试验结果进行对比,研究3国规范计算风荷载的差异与原因.分析结果表明:中国规范顺风向风荷载小于日本和澳大利亚规范,尤其在结构中下部,中国规范横风向风荷载在结构中下部大于日本和澳大利亚规范,在结构上部小于日本和澳大利亚规范,中国规范横风向风荷载与顺风向比值在结构中下部大于日本和澳大利亚规范,在结构顶部小于日本和澳大利亚规范,中国规范湍流度取值小于日本和澳大利亚规范,峰值因子的取值偏小.  相似文献   

5.
以苏通长江公路大桥为工程背景,针对该桥风致振动响应监测系统实测的一次下击暴流风与桥梁结构振动加速度响应实测数据,对该桥在一次雷暴天气下风速、风向及主梁振动响应进行研究.首先,对桥位处下击暴流实测风速、风向数据进行分析,获得了该桥主梁跨中、桥塔塔顶处下击暴流风的时变平均风与脉动风特性;然后,对下击暴流作用下主梁风致振动加速度响应数据进行分析.结果表明:在下击暴流作用下,该桥主梁与塔顶高度处风速发生了明显突变,持续时间约为10~24 min;主跨跨中主梁外侧边缘处下游、上游侧最大瞬时风速分别为32.4 m/s和27.3 m/s,南、北桥塔塔顶高度处最大瞬时风速分别达60.5 m/s和62.9 m/s.主梁高度处30 s时距湍流度约0.048~0.32,10 min时距湍流度约0.43~0.51;主梁下游与北塔处折减脉动风速符合高斯特性,其功率谱与Burlando等学者的实测结果吻合较好.主梁跨中附近(即NJ26D、NJ32D拉索锚固处)发生了较为明显的短时竖向与横桥向振动,相应加速度响应幅值分别为0.25 m/s2和0.10 m/s2,对应位移幅值分别为0.12 m与0.03 m;主梁竖向振动响应明显大于横桥向振动响应,主梁竖向振动主频为0.183 Hz,与主梁全桥一阶正对称竖弯振型频率0.174 Hz接近;横桥向振动主频为0.117 Hz,与主梁全桥一阶正对称侧弯振型频率0.0975 Hz接近.  相似文献   

6.
本文基于长江口崇明东滩气象站实测资料,给出逐月平均和主导风速及风向.观测资料和统计结果表明,从1月至12月,各月平均风速分别为4.2、4.6、4.9、4.9、4.7、4.4、4.9、4.9、4.5、4.0、4.1和4.3 m/s,平均风向分别为N、NE、NE、SE、SE、SE、S、SE、NE、NE、N和N.统计给出了各月第一、第二风向频率风,最大平均风速所在方位风,强风风向优势和风速优势风的风向、频率和平均速度.总体来看,长江口具有春夏季盛行东南风、秋冬季盛行偏北风的亚热带季风特征.强风频率有明显的季节性变化,3、4月和7、8月明显高于其他月份,且3、4月明显低于7、8月份,分别达到了0.8%和1.52%,相对应的平均风速为11.5和12.4 m/s.  相似文献   

7.
为了考察某拟建超高层建筑(总高838m)在设计风速下的风致响应,对该大厦进行了多自由度气弹模型风洞试验.模型自振特性测试表明,该气弹模型各横截面对两个正交的水平主轴对称,每个轴向1阶和2阶频率误差分别在1%和28%以内,1阶阻尼比约为2%,平动振型与实际结构有限元模型计算结果较为一致.分析不同风速和风向角下风致响应发现,该大厦顶部在100年重现期设计风速下最大动态侧移为0.89m,且动态位移本身并未使结构顶部位移超标,而10年,50年和100年重现期下风致加速度响应超过规范阈值幅度分别为16%,23%和29%.另外,该大厦横风向涡振使得临界风速附近横风向风致响应明显偏大,如果假定风荷载谱为白噪声,则横风向1阶气动阻尼比对总响应的贡献达37%.若欲保证该建筑在百年一遇风速下加速度在允许范围内,则须使其结构阻尼比在2.9%以上.  相似文献   

8.
大跨度空间钢管桁架结构的风振响应和风振控制研究   总被引:1,自引:0,他引:1  
为了获得大跨度空间钢管桁架结构在风荷载作用下的实时受力、变形情况和风振系数,本文采用自回归法编制计算程序,数值模拟具有空间相关性的大跨度空间钢管桁架结构的多点风速时程,根据由风速时程转化的作用于结构的风荷载时程对两个大跨度空间钢管桁架结构进行风振响应分析和风振系数的计算.结果表明,编制的计算程序可较好地模拟大跨度空间钢管桁架结构的空间点风速时程,计算所得风速时程的功率谱与目标功率谱吻合较好;采用粘滞阻尼器后结构节点位移及杆件应力振动幅值均有所降低,可有效地减小结构的风振响应;根据风振响应的计算结果给出了可供设计参考的结构风振系数.  相似文献   

9.
高位构件及横担的吊装施工是超高大跨越输电塔组立的关键技术。由于塔身超高,风荷载将直接影响到构件的吊装定位及施工安全。本文利用工程所在地已有的风速观测资料,并结合当地的气象条件,开展江中高空风速变化特点的分析计算,掌握风速变化规律;针对座地双摇臂旋转式支座抱杆组立钢管高塔,考虑江中高空风速的变化特点,开展高位构件及横担吊装施工过程中风荷载对吊装、定位的影响规律研究,提出高位构件吊装施工的安全风速。结果表明:工程所在江域江面平均风速达5. 43 m/s,最大风速平均值达15. 67 m/s;不同塔高处风速对吊装构件的偏移量影响较大;考虑到吊装施工安全,建议安全风速限值取17 m/s,当施工时当地10 m高度处的基本风速大于安全限值时,建议停止构件吊装施工或者加强安全措施。  相似文献   

10.
高压输电塔线体系风致非线性振动气弹模型风洞试验   总被引:4,自引:0,他引:4  
基于边界层风洞气弹模型试验的方法,对高压输电塔线耦联体系的风振响应进行了试验研究,首次在风洞中重现了输电塔线体系倒塔破坏现象.研究表明:在紊流风场中,高压输电塔线体系的风致振动呈现较强的非线性振动特征,随风速增加,非线性振动程度加剧,且输电塔结构振动呈现出混沌振动特征;由于输电线与绝缘子振动的影响,塔线体系中输电塔高阶模态的振动非常显著,且随风速增加,高阶模态的能量甚至强于低阶模态的能量;导地线与绝缘子对输电塔结构的影响随风速增加而增强.塔线体系的风振响应计算需考虑高阶模态的影响.结构设计时,需合理考虑大风时导地线与绝缘子的非线性振动对输电塔的影响.  相似文献   

11.
在分析±1 100 kV特高压长悬臂输电塔的风振扭转响应机制的基础上,通过有限元动力时程计算考察扭转效应对结构内力的影响。首先,计算特高压长悬臂输电塔结构横担部位的风振系数;其次,根据横担的位移时程结果明确输电塔结构的风振扭转效应;最后,定义等效扭转风振系数,计算脉动风作用下的附加扭转荷载,分析风向角和长悬臂输电塔横担总长度对结构扭转效应的影响。研究结果表明:在风荷载动力时程的作用下,长悬臂输电塔结构会产生约0.01 rad整体扭转,考虑附加扭转工况可以提高输电塔主材和斜材的设计可靠度,提高程度从高到低依次为塔身斜材、横担斜材、横担主材和塔身主材;应力包络程度从74.4%提升到93.6%,且对所有主材和斜材,考虑扭转荷载的静力计算结果对动力时程计算结果的包络程度均在90%以上;不同风向角时,输电塔结构的扭转效应和横担风荷载Y方向的分配系数呈正线性关系,其中0°风对应的等效扭转风振系数最大,达到0.75,而90°风对应的等效扭转风振系数为0。随着输电塔结构的横担总长度减小,结构的扭转效应也减小,0°风对应等效扭转风振系数先减小后稳定在0.55附近,且拐点与结构的扭转振型的阶次有关。当扭转阵型为低阶阵型时,长悬臂输电塔结构的风振扭转效应明显。  相似文献   

12.
采用超声风速仪与加速度传感器,对台风"梅花"作用下中国航海博物馆周围风场及双曲面索网结构风振响应进行现场实测,对脉动风速的概率密度分布、湍流度、阵风因子、湍流积分尺度、风速功率谱等风场特性及加速度概率密度分布、反应谱、结构自振频率、阻尼比、振型等风振特性进行研究.结果表明:脉动风速的概率密度分布符合高斯分布;湍流度和阵风因子随平均风速的增大而减小;顺风向、横风向、竖向脉动风速影响下顺风向湍流积分尺度平均值的比值为12.1∶3.4∶1.0,湍流积分尺度与平均风速相关性较小,随湍流度的增大而减小;实测脉动风速谱与Von Karman谱较为吻合;风振具有较强的非高斯性,随振幅阈值的增长,阻尼比的变化可分为线性递增段和平稳段,利用谱分析法、随机减量法、随机子空间法等方法计算得到的自振频率较为一致.  相似文献   

13.
针对风力机叶片在正常工况下运行时受到周期性的气动力导致叶片发生振动,降低叶片使用寿命的情况,研究了风力机叶片在不同风速下的振动特性。选取不同风速条件下的5种工况 (风速范围为15~40 m/s),选用CFD方法对NREL PHASE VI叶片进行模拟计算,获取不同风速下的振型和振动位移曲线。结果表明:叶片的主要振型是挥舞和摆振,高阶叶片振型存在着弯曲和扭转组合的复杂变形;来流速度从15 m/s增大到40 m/s时,叶片吸力面的压力分布不均匀性不断提高,来流速度为40 m/s时最大压力差值约达到3 000 Pa;来流速度为15 m/s时振幅最小为0.525 4 mm,来流速度为40 m/s时振幅最大,为3.628 2 mm,约是最小振幅的6.9倍;5种工况的振动曲线均呈现衰减趋势,叶片趋于稳定振动;当来流风速越大时,由来流风所产生的气动力对叶片的作用力越大,叶片的振幅呈现增大的趋势。研究结果可为风力机设计提供参考。  相似文献   

14.
采用基于CFD和CSD的准静态耦合方法对横风作用下货车篷布结构强度进行分析。首先建立横风作用下货车篷布数值模拟计算模型,得到不同运行工况下货车篷布表面压力分布;随后建立篷布索膜结构强度计算模型,以篷布表面压力分布为加载载荷,运用非线性有限元分析方法对不同运行工况下的篷布强度进行数值模拟计算。研究结果表明:货车以速度120 km/h在大风地区运行,当横风风速小于41.4 m/s时,采用双层焊接结构的无网篷布所受最大主应力小于篷布许用应力;当横风风速小于54 m/s时,采用双层焊接结构的有防风网篷布所受最大主应力小于篷布许用应力,满足篷布安全运行要求;篷布顶面和篷布网眼位置的最大位移和最大主应力随着货车运行速度和横风风速的增加而增大,横风风速对篷布最大位移和最大主应力的影响大于货车速度对其的影响。  相似文献   

15.
根据测风塔和当地气象站数据,对江底河大桥桥址处深切峡谷的风场特性进行研究.基于数据统计分析得到桥址处风场的平均风速、风向、湍流强度、湍流积分尺度和湍流的功率谱密度函数.结果表明:该桥所在的深切峡谷地形对风向有锁定作用、对风速有加速作用、并且对各个风向下的湍流特性有明显的影响;深切峡谷顺风向湍流强度与平均速度的关系用反比例型函数拟合,拟合效果良好且高风速下接近规范值;竖风向湍流强度明显高于规范推算值.顺风向实测风谱与Kaimal谱相差较大而与von Karman谱吻合较好;竖风向实测风谱明显大于Panofsky风谱而与von Karman谱比较接近.横风向实测风谱与Panofsky谱、von Karman谱都比较接近.  相似文献   

16.
针对碟式太阳能聚光器最佳避风姿势问题,采用恒风速虚拟风洞实验方法对不同姿态和不同风速下的碟式太阳能聚光器风动载荷进行仿真分析。研究结果表明:在靠近来流方向处碟式太阳能聚光器总压力较大,而远离来流方向处其总压力相对较小,且碟式太阳能聚光器反射面的最大压强随恒风速的增大而不断增加;当风速由v=15 m/s增大到v=25 m/s时,碟式太阳能聚光器所受风力和风力矩的最大幅值至少增加了110%。  相似文献   

17.
通过节段模型静力三分力与测振风洞试验,研究了0°~90°风偏角下不同宽高比B/H与不同腹板开孔率的H型吊杆横风向驰振特性.B/H=2.4的模型静力试验显示:腹板全封闭时,在0°~8°与64°~90°偏角区间内存在驰振失稳可能,随开孔率增大,驰振失稳偏角区间有所减小且失稳危险性有所降低.B/H=2.4的模型测振试验显示:腹板全封闭模型在0°与5°偏角较低风速即发生了驰振;开孔率为14%与27%的模型试验风速区间内均无驰振现象,不过开孔率为38%模型在80°,85°,90°偏角高于90 m/s风速下均发生了驰振.宽高比B/H=1.6腹板全封闭模型试验显示,0°与5°偏角较低风速下也出现了横风向驰振;开孔率38%模型在85°与90°偏角高于110 m/s的风速下也发生了驰振.与改变宽高比相比,适度腹板开孔可明显改善H型吊杆驰振特性.  相似文献   

18.
基于西北地区某风电场2015—2016年的风速风向实测数据,分析了风电场风塔的尾流特性,并与现有风力机尾流模型进行了对比分析.在此基础上,对在远尾流场作用下的风速风向、湍流强度、湍流积分尺度、概率密度分布等风场特性进行了详细分析.研究结果表明:现有的Jensen模型、Park-Gauss模型与实际工程中多个尾流作用下的风电场尾流特性存在差异.在多风向多尾流叠加作用下,当风速大于10 m/s时,各风塔湍流强度随着平均风速的增长呈增大趋势,风电场内部风塔湍流强度在低湍流段更加集中,外围风塔湍流强度随平均风速的增大速率略快于内部风塔,而湍流积分尺度随平均风速的增大程度总体慢于内部风塔,且外围风塔实测风速更加接近高斯分布.  相似文献   

19.
为了研究环境风影响下激光雨滴谱仪探测数据的应用, 基于北京2018年6—8月的多次降水过程, 对比架设于不同高度的OTT-Parsivel激光雨滴谱仪和超声风温仪的探测结果, 分析环境中不同强度的水平和垂直风对雨滴谱仪观测的影响。结果表明, 水平风速小于10 m/s且垂直风速大于0.4 m/s时, 利用OTT-Parsivel观测的速度谱估计垂直风速, 80%以上的估计值与超声风温仪观测值一致; 对雨滴垂直速度的修正会使计算得出的直径1 mm左右的雨滴数浓度发生显著变化, 进而影响雨滴谱衍生物理量; 借助定义的样本速度谱平均标准差和异常雨滴比例两个特征参数, 可以识别80%水平风速大于10 m/s的样本。  相似文献   

20.
对钢管-角钢组合输电塔一类的风敏感结构,其各杆件的体型系数及折减系数是该结构抗风设计中重要的风荷载参数.以500 kV和110 kV输电塔为工程背景,首先设计缩尺比分别为1:8.5的塔身和1:2.5横担刚性节段模型,然后在3个不同均匀来流风速及不同风向角下进行同步测压风洞试验,得到角钢及钢管杆件的体型系数与背风面风荷载折减系数的变化规律.并以此归纳了塔身和横担各杆件的体型系数分布及不同风向角下节段模型整体体型系数,最后将试验确定的结果与国内外相关规范值进行比较.结果表明:来流风速对塔身和横担中的角钢体型系数几乎无影响.在0°风向角下,塔身角钢体型系数沿塔身节段呈上小下大的变化趋势.塔身杆件中的角钢折减系数与日本规范较吻合.在不同雷诺数下的塔身(3.10×104~4.34×104)或横担(5.57×104~8.00×104)节段模型折减系数的差值很小.塔身和横担节段模型阻力系数与日本规范较吻合,中国规范取值分别偏小7.2%和4.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号