首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为了实施对地面目标的精确打击,空中飞行器上的雷达首先需要对地面目标精确定位.由于雷达电波在大气中传播时会产生折射误差,因而会影响雷达定位精度.针对有关部门的实际需求,以及目前大气折射误差修正基本上都是基于地基雷达的现状.通过选择高精度的对流层和电离层大气模型,利用全国对流层大气参数和电离层大气浓度剖面建立大气折射率剖面数据库.根据电波传播理论,利用射线描迹法推导出了位于电离层中俯视雷达的大气折射误差修正模型和定位误差模型.仿真实验表明,大气折射效应对高空俯视雷达探测精度影响很大.利用该模型可极大地提高俯视雷达的定位精度,为有效打击地面目标奠定基础.  相似文献   

2.
受大气折射效应的影响,电波传播路径发生弯曲,传播速度小于光速,给无线电定位系统带来了一定的误差,因此需利用电波折射误差计算软件进行修正.首先通过对常用大气折射误差修正方法的分析,结合实际应用需求,选取了基于地面参数预测的电波折射修正模型.然后进行折射软件修正算法设计,给出了流程图及主要功能实现方法.最后通过模拟数据对该软件修正效果进行检验.结果表明,该软件能够准确、快速显示大气引起的电波折射误差,且能够将误差控制在1%以内.  相似文献   

3.
电子系统中电波折射实时修正新方法研究   总被引:1,自引:0,他引:1  
一般常用电波折射误差修正方法存在计算复杂且不具有实时性缺陷.提出了一种电波折射误差修正的新方法,即用微波辐射计采用大气遥感的方法进行电波折射实时修正.它不仅具有全天候、实时性、机动性等特点,而且由于它直接测量出电波传播路径上的大气附加时延积分,从而直接给出距离误差修正量,因此其精度较高.  相似文献   

4.
雷达电波射线上大气折射率的准确性是提高电波折射误差修正精度的关键因素之一.对下垫面复杂地区的雷达系统,常用的大气球面分层法因没有考虑大气水平方向变化使得电波射线上的折射率具有较大的误差,从而影响了电波折射误差修正精度.针对下垫面复杂地区的三维大气结构,提出了获得电波射线上大气折射率的组合方法,即在雷达所在地采用直接探测法,在其他电波射线上,先计算出射线点的位置,然后再利用已建立的全国大气剖面模型数据库得到该位置的大气折射率,从而较为精确地获得电波射线上的大气折射率.经实验验证,采用组合法获得的电波射线上的折射率不仅具有较好的精度,而且可有效地提高电波折射误差修正精度,进而提高下垫面复杂地区的雷达探测精度.  相似文献   

5.
在卫星发射和运行过程中,精确测量其飞行的轨道参数是地面卫星测控系统的主要任务之一.要使地面测控系统对卫星进行精确地定位,就必需对引起测控系统误差源之一的大气折射误差进行修正.根据电波传播理论和我国大气环境特点,针对地面卫星测控系统要求的高精度、实时性等特点,利用我国10年探空环境资料,建立了基于母函数的大气折射误差在线...  相似文献   

6.
雷达是测量目标位置和速度的常用手段之一.为了提高雷达的测量精度,需要对因大气折射效应而产生的雷达测量误差进行修正.首先简要给出了雷达系统中大气折射误差的问题描述及进行误差修正的思路.然后不仅详细阐述了目前常用的电波射线描迹法、近似修正法和新型修正法等电波折射误差修正技术在雷达定位中的研究和应用现状,而且也阐述了几种用于对雷达测速折射误差修正方法的研究和应用现状,同时,对各种方法的使用范围及其优缺点也进行了简单的分析.最后,给出了雷达系统大气折射误差修正技术在今后的研究方向.  相似文献   

7.
目前,GPS全球定位系统在军、民各方面的用途越来越广泛,但是由于空中大气介质的不均匀性使得电波传播速度减慢,射线产生弯曲,从而产生折射误差,因此要提高GPS的定位导航精度,就必须进行电波折射误差修正,本提出了利用气象参数的电波折射误差快速算法,并且进行了精度检验。  相似文献   

8.
提高雷达探测精度的关键因素之一是对电波折射误差进行高精度的修正。针对目前大气折射率线性插值的方法导致电波射线折射率产生较大误差的情况,依据大气折射率随高度变化的规律,提出了样条插值和最小二乘结合的方法。在0~13 km高度范围内利用样条插值得到连续的折射率曲线,在9~60 km高度范围内利用最小二乘方法拟合出折射率连续的曲线。将样条插值和最小二乘拟合方法得到的折射率与分段插值的折射率、实际探测的大气折射率进行对比,证明样条插值具有较高的精度,最小二乘拟合函数具有计算简便、误差小的优点;将实际探测数据与由样条插值和最小二乘法得到的大气折射率折射误差进行比较,证明了样条插值和最小二乘法可有效提高电波折射修正精度。  相似文献   

9.
提高电波折射修正精度的关键是提高雷达测试场区大气空间结构精度.本文提出了下垫面复杂地区在雷达电波射线经过区域内进行多点大气探测的新方法——区域法.结果表明,在下垫面复杂地区最好使用区域法测量大气空间结构.  相似文献   

10.
提高电波折射修正精度的关键是提高雷达测试场区大气空间结构精度.本文提出了下垫面复杂地区在雷达电波射线经过区域内进行多点大气探测的新方法--区域法.结果表明,在下垫面复杂地区最好使用区域法测量大气空间结构.  相似文献   

11.
利用多参数估计法解算对流层延迟   总被引:1,自引:0,他引:1  
由于对流层引起的真空光速、气温、气压和温度的变化使码和载波的观测值受到时延的影响,本文把电离层延迟、卫星和接收机钟差、整周模糊度作为未知参数,利用多参数估计法建立误差方程、法方程来解算对流层的延迟。  相似文献   

12.
在区域气候模式的基础上引入了对流层大气化学模式,并实现两的双向反馈连接,利用该模式系统模拟中国地区对流层大气臭氧和区域气候,发现东亚季风是影响中国地区对流层大气臭氧分布的重要原因,并且对流层臭氧分布局域性较为明显。模拟也得到了模拟区域气候的四个典型月特征,并与分析资料对比验证了所得结果。此外利用大气化学模式计算的臭氧反馈到区域气候模型中,模拟对流层臭氧增加背景下。模拟区域内晴空辐射强迫的变化。  相似文献   

13.
针对信号的非平稳性,根据小波相关性在分析两列信号相互关系方面的有效性,结合山东地壳运动GPS观测网络部分监测站的数据,利用GAMIT软件解算CASH、JIMO、RIZH、WUDI的对流层延迟改正.结果表明:两两站间的相关延迟量比较接近,没有出现较大的浮动,最小相关延迟发生在CASH-RIZH之间,最大相关延迟发生在RIZH-JIMO之间.  相似文献   

14.
小型米散射激光雷达系统设计   总被引:1,自引:0,他引:1  
为了探测对流层内大气气溶胶和卷云的光学特性以及大气水平能见度等,在阐述了大气气溶胶探测原理及信号处理方法的基础上,利用二极管激光泵浦的Nd:YAG固体激光器的二倍频波长(532 nm)激光为光源,设计了一台小型微脉冲米散射激光雷达,并利用标准大气模型对系统进行了仿真计算。仿真结果表明,在探测误差小于10%条件下,系统在白天和夜晚的探测高度分别为6 km和13 km。该系统还具有对人眼安全、能全方位扫描探测等特点,可应用于城市及特定场合(如厂区,大型公共场所)的大气环境监测,也可用于沙尘暴探测及其预警预报技术的研究。  相似文献   

15.
地基增强系统(ground-based augmentation system,GBAS)中,由于不同路径方向区域范围内气象条件(温度、压强、相对湿度等)存在差异,导致系统差分修正误差中包含非标称对流层误差;即非零均值标准正态分布误差。在非标称对流层误差的影响下,机载端垂直保护级(vertical protection level,VPL)增加,系统完好性风险增大以及地面播发信号可用性降低。详细分析了非标称对流层误差对VPL的影响,发现非标称对流层误差与卫星仰角有关;并且跟踪可见卫星数目增多时,系统受非标称对流层误差的影响,VPL值进而增加。为了提高GBAS完好性,提出了一种新的选星算法,降低非标称对流层对VPL的影响,提高系统完好性信号(system in tegrity signal,SIS)可用性。仿真计算GBAS进近服务类型C(GAST C)和GBAS进近服务类型D(GAST D)场景下的VPL,分析改进的选星算法对系统完好性的影响。结果表明,改进的选星算法有效地降低了非标称对流层对GBAS完好性的影响,减小了机载端VPL值,降低了完好性风险,提高了在气象异常条件下GBAS信号的可用性。  相似文献   

16.
GPS定位误差中对流层延迟的分析   总被引:2,自引:0,他引:2  
系统地分析了对流层延迟特性在GPS导航中造成的定位误差。基于霍普菲尔德模型和萨斯塔莫宁模型,提出了一种在缺少实测气象参数条件下使用的简易对流层延迟修正模型,并利用Matlab仿真软件对静态和动态的接收机实测数据进行了分析。实验结果表明,简易修正模型可以消除70%左右的对流层影响,有效地提高了GPS的定位精度。  相似文献   

17.
针对卫星与地面站进行通信时,地面站接收到的信号存在明显的多普勒频移现象,提出了一种基于SGP4模型的卫星多普勒频移补偿算法。首先,根据开普勒定律推导出多普勒频移公式;然后由卫星星历信息,基于SGP4模型预测出卫星的轨道,计算出卫星和地面站之间的相对位置和相对速度,得出多普勒频偏,在地面站分别进行预校正与补偿;最后,使用STK/HPOP生成标称轨道对SGP4模型生成的预测轨道进行误差分析和性能评估。仿真结果表明,对于工作在Ka频段、轨道高度200~1 000 km的低轨卫星,多普勒频偏估计精度优于50 Hz,精度高;随着轨道高度的增加,多普勒频偏估计更加精确。  相似文献   

18.
By Wei formula in pressure coordinate, the stratosphere-troposphere mass exchange (STME) is diagnosed globally for 44 years from 1958 to 2001 using the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis datasets. Regions of mass flux into the stratosphere are found over Indonesia, bay of Bangladesh and the mid-west coast of South Africa. Compensating mass outflow from the stratosphere appears mainly over mid-latitudes near large-scale troughs. Upward and downward transport of mass at the middle and high latitudes accompany with each other. Mass flux into troposphere is stronger in autumn and winter than in spring and summer. Strong downward mass flux into the troposphere occurs in eastern Asia the whole year with nearly stable sites. Although the area of eastern Asia accounts for only 5.6% of that of the northern hemisphere (NH), its net mass exchange reaches 15.83% of that of the NH, which means that research on STME of eastern Asia is greatly important to that of the NH and even the global areas. Air across the tropopause enters more from stratosphere to troposphere than that from troposphere to stratosphere, which is possibly related with systematic bias of the assimilated datasets and with persistent rise of the tropopause height. Contributions of the mass exchange and the mass flux exchange in the NH and southern hemisphere (SH) on their latitudes increase from equator to pole, with larger contributions in the NH. Mass exchange and mass flux exchange per areas at high latitudes are larger than that at low latitudes, which means greater mass exchange efficiency at high latitudes.  相似文献   

19.
Seasonal variation of global stratosphere-troposphere mass exchange   总被引:2,自引:0,他引:2  
By Wei formula in pressure coordinate, the stratosphere-troposphere mass exchange (STME) is diagnosed globally for 44 years from 1958 to 2001 using the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis datasets. Regions of mass flux into the stratosphere are found over Indonesia, bay of Bangladesh and the mid-west coast of South Africa. Compensating mass outflow from the stratosphere appears mainly over mid-latitudes near large-scale troughs. Upward and downward transport of mass at the middle and high latitudes accompany with each other. Mass flux into troposphere is stronger in autumn and winter than in spring and summer. Strong downward mass flux into the troposphere occurs in eastern Asia the whole year with nearly stable sites. Although the area of eastern Asia accounts for only 5.6% of that of the northern hemisphere (NH), its net mass exchange reaches 15.83% of that of the NH, which means that research on STME of eastern Asia is greatly important to that of the NH and even the global areas. Air across the tropopause enters more from stratosphere to troposphere than that from troposphere to stratosphere, which is possibly related with systematic bias of the assimilated datasets and with persistent rise of the tropopause height. Contributions of the mass exchange and the mass flux exchange in the NH and southern hemisphere (SH) on their latitudes increase from equator to pole, with larger contributions in the NH. Mass exchange and mass flux exchange per areas at high latitudes are larger than that at low latitudes, which means greater mass exchange efficiency at high latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号