首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensory systems with high discriminatory power use neurons that express only one of several alternative sensory receptor proteins. This exclusive receptor gene expression restricts the sensitivity spectrum of neurons and is coordinated with the choice of their synaptic targets. However, little is known about how it is maintained throughout the life of a neuron. Here we show that the green-light sensing receptor rhodopsin 6 (Rh6) acts to exclude an alternative blue-sensitive rhodopsin 5 (Rh5) from a subset of Drosophila R8 photoreceptor neurons. Loss of Rh6 leads to a gradual expansion of Rh5 expression into all R8 photoreceptors of the ageing adult retina. The Rh6 feedback signal results in repression of the rh5 promoter and can be mimicked by other Drosophila rhodopsins; it is partly dependent on activation of rhodopsin by light, and relies on G(αq) activity, but not on the subsequent steps of the phototransduction cascade. Our observations reveal a thus far unappreciated spectral plasticity of R8 photoreceptors, and identify rhodopsin feedback as an exclusion mechanism.  相似文献   

2.
Horie T  Shinki R  Ogura Y  Kusakabe TG  Satoh N  Sasakura Y 《Nature》2011,469(7331):525-528
In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.  相似文献   

3.
4.
5.
Chacron MJ  Doiron B  Maler L  Longtin A  Bastian J 《Nature》2003,423(6935):77-81
Animals have developed stereotyped communication calls to which specific sensory neurons are well tuned. These communication calls must be discriminated from environmental signals such as those produced by prey. Sensory systems might have evolved neural circuitry to encode both categories. In weakly electric fish, prey and communication signals differ in their spatial extent and frequency content. Here we show that stimuli of different spatial extents mimicking prey and communication signals cause a switch in the frequency tuning and spike-timing precision of electrosensory pyramidal neurons, resulting in the selective and optimal encoding of both stimulus categories. As in other sensory systems, pyramidal neurons respond only to stimuli located within a restricted region of space known as the classical receptive field (CRF). In some systems, stimulation outside the CRF but within a non-classical receptive field (nCRF) can modulate the neural response to CRF stimulation even though nCRF stimulation alone fails to elicit responses. We show that pyramidal neurons possess a nCRF and that it can modulate the response to CRF stimuli to induce this neurobiological switch in frequency tuning.  相似文献   

6.
J A Pollock  S Benzer 《Nature》1988,333(6175):779-782
Drosophila and other Dipteran flies have three different kinds of visual organs; in the adult a pair of compound eyes and three dorsal ocelli; and in the larva a pair of internal photoreceptor organs. They develop in distinct ways, yet have certain features in common. All three organs use retinal-derived chromophores, coupled to distinct opsins, to provide a diversity of spectral sensitivities. Four opsin genes have been identified thus far in Drosophila; Rh1, Rh2, Rh3 and Rh4 (refs 6-11). We have used in situ hybridization to study the messenger RNAs expressed by these four opsin genes in all three visual organs. Rh1, Rh3 and Rh4 are already known to be expressed in different subsets of cells in the compound eye. We found that, in contrast, opsin Rh2 is the predominant opsin expressed in the ocelli. Opsin Rh1 is known to be expressed in the larval photoreceptor. We found that Rh3 and Rh4 are as well, but not Rh2. The ocellar-specific gene expression of Rh2 is of particular interest for its possible bearing on the function of the ocellus.  相似文献   

7.
Noudoost B  Moore T 《Nature》2011,474(7351):372-375
The prefrontal cortex is thought to modulate sensory signals in posterior cortices during top-down attention, but little is known about the underlying neural circuitry. Experimental and clinical evidence indicate that prefrontal dopamine has an important role in cognitive functions, acting predominantly through D1 receptors. Here we show that dopamine D1 receptors mediate prefrontal control of signals in the visual cortex of macaques (Macaca mulatta). We pharmacologically altered D1-receptor-mediated activity in the frontal eye field of the prefrontal cortex and measured the effect on the responses of neurons in area V4 of the visual cortex. This manipulation was sufficient to enhance the magnitude, the orientation selectivity and the reliability of V4 visual responses to an extent comparable with the known effects of top-down attention. The enhancement of V4 signals was restricted to neurons with response fields overlapping the part of visual space affected by the D1 receptor manipulation. Altering either D1- or D2-receptor-mediated frontal eye field activity increased saccadic target selection but the D2 receptor manipulation did not enhance V4 signals. Our results identify a role for D1 receptors in mediating the control of visual cortical signals by the prefrontal cortex and suggest how processing in sensory areas could be altered in mental disorders involving prefrontal dopamine.  相似文献   

8.
Xiang Y  Yuan Q  Vogt N  Looger LL  Jan LY  Jan YN 《Nature》2010,468(7326):921-926
Photoreceptors for visual perception, phototaxis or light avoidance are typically clustered in eyes or related structures such as the Bolwig organ of Drosophila larvae. Unexpectedly, we found that the class IV dendritic arborization neurons of Drosophila melanogaster larvae respond to ultraviolet, violet and blue light, and are major mediators of light avoidance, particularly at high intensities. These class IV dendritic arborization neurons, which are present in every body segment, have dendrites tiling the larval body wall nearly completely without redundancy. Dendritic illumination activates class IV dendritic arborization neurons. These novel photoreceptors use phototransduction machinery distinct from other photoreceptors in Drosophila and enable larvae to sense light exposure over their entire bodies and move out of danger.  相似文献   

9.
Petrovic M  Hummel T 《Nature》2008,456(7223):800-803
The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.  相似文献   

10.
11.
12.
Dynamic coding of behaviourally relevant stimuli in parietal cortex.   总被引:12,自引:0,他引:12  
Louis J Toth  John A Assad 《Nature》2002,415(6868):165-168
A general function of cerebral cortex is to allow the flexible association of sensory stimuli with specific behaviours. Many neurons in parietal, prefrontal and motor cortical areas are activated both by particular movements and by sensory cues that trigger these movements, suggesting a role in linking sensation to action. For example, neurons in the lateral intraparietal area (LIP) encode both the location of visual stimuli and the direction of saccadic eye movements. LIP is not believed to encode non-spatial stimulus attributes such as colour. Here we investigated whether LIP would encode colour if colour was behaviourally linked to the eye movement. We trained monkeys to make an eye movement in one of two directions based alternately on the colour or location of a visual cue. When cue colour was relevant for directing eye movement, we found a substantial fraction of LIP neurons selective for cue colour. However, when cue location was relevant, colour selectivity was virtually absent in LIP. These results demonstrate that selectivity of cortical neurons can change as a function of the required behaviour.  相似文献   

13.
Melanopsin has been proposed to be the photopigment of the intrinsically photosensitive retinal ganglion cells (ipRGCs); these photoreceptors of the mammalian eye drive circadian and pupillary adjustments through direct projections to the brain. Their action spectrum (lambda(max) approximately 480 nm) implicates an opsin and melanopsin is the only opsin known to exist in these cells. Melanopsin is required for ipRGC photosensitivity and for behavioural photoresponses that survive disrupted rod and cone function. Heterologously expressed melanopsin apparently binds retinaldehyde and mediates photic activation of G proteins. However, its amino-acid sequence differs from vertebrate photosensory opsins and some have suggested that melanopsin may be a photoisomerase, providing retinoid chromophore to an unidentified opsin. To determine whether melanopsin is a functional sensory photopigment, here we transiently expressed it in HEK293 cells that stably expressed TRPC3 channels. Light triggered a membrane depolarization in these cells and increased intracellular calcium. The light response resembled that of ipRGCs, with almost identical spectral sensitivity (lambda(max) approximately 479 nm). The phototransduction pathway included Gq or a related G protein, phospholipase C and TRPC3 channels. We conclude that mammalian melanopsin is a functional sensory photopigment, that it is the photopigment of ganglion-cell photoreceptors, and that these photoreceptors may use an invertebrate-like phototransduction cascade.  相似文献   

14.
Although many properties of the nervous system are shared among animals and systems, it is not known whether different neuronal circuits use common strategies to guide behaviour. Here we characterize information processing by Caenorhabditis elegans olfactory neurons (AWC) and interneurons (AIB and AIY) that control food- and odour-evoked behaviours. Using calcium imaging and mutations that affect specific neuronal connections, we show that AWC neurons are activated by odour removal and activate the AIB interneurons through AMPA-type glutamate receptors. The level of calcium in AIB interneurons is elevated for several minutes after odour removal, a neuronal correlate to the prolonged behavioural response to odour withdrawal. The AWC neuron inhibits AIY interneurons through glutamate-gated chloride channels; odour presentation relieves this inhibition and results in activation of AIY interneurons. The opposite regulation of AIY and AIB interneurons generates a coordinated behavioural response. Information processing by this circuit resembles information flow from vertebrate photoreceptors to 'OFF' bipolar and 'ON' bipolar neurons, indicating a conserved or convergent strategy for sensory information processing.  相似文献   

15.
摘要:目的 比较不同血清型腺相关病毒( AAV5、AAV6、AAV8 和 AAV9) 对背根神经节( DRG) 初级感觉神经元的转导效能。 方法 将 24 只雄性 SD 大鼠随机分为 8 组,分别通过 DRG 直接注射不同血清型腺相关病毒( AAV5、AAV6、AAV8 和 AAV9)载体,各组大鼠分别在转染后第 3 周和第 4 周取材,并在共聚焦显微镜下观测对大鼠 DRG初级感觉神经元的转染效果。 结果 组织切片的荧光结果显示,腺相关病毒各亚型的转染效果如下:转染 3 周,AAV9> AAV6> AAV8 > AAV5;转染 4 周,AAV9> AAV6> AAV8> AAV5。 其中,AAV9 载体对大鼠 DRG 神经元的转导效果较好。 结论 DRG 注射不同血清型腺相关病毒( AAV5、AAV6、AAV8 和 AAV9) 载体,AAV9 对 DRG 神经元的转导效能最佳。  相似文献   

16.
17.
18.
R Ranganathan  G L Harris  C F Stevens  C S Zuker 《Nature》1991,354(6350):230-232
CALCIUM is involved in the adaptation of vertebrate photoreceptors to light and may have a similar role in invertebrate phototransduction. But the molecular mechanisms mediating this stimulus-dependent regulation are not well understood in any G protein-coupled transduction system. We have developed a preparation of isolated Drosophila photoreceptors that has allowed us to carry out an electrophysiological characterization of the light-activated response in these sensory neurons using patch-clamp techniques. We report here that extracellular calcium entering through the light-activated conductance is a key regulator of both the activation and deactivation phases of the phototransduction cascade, and that inaC mutant photoreceptors are specifically defective in the calcium-dependent deactivation mechanism. These data suggest that the light-dependent calcium influx inactivates this cascade through a biochemical pathway that requires the inaC gene product, and that this mechanism represents a molecular basis for stimulus-dependent regulation of visual transduction in Drosophila photoreceptors.  相似文献   

19.
A putative flip-flop switch for control of REM sleep   总被引:1,自引:0,他引:1  
Lu J  Sherman D  Devor M  Saper CB 《Nature》2006,441(7093):589-594
Rapid eye movement (REM) sleep consists of a dreaming state in which there is activation of the cortical and hippocampal electroencephalogram (EEG), rapid eye movements, and loss of muscle tone. Although REM sleep was discovered more than 50 years ago, the neuronal circuits responsible for switching between REM and non-REM (NREM) sleep remain poorly understood. Here we propose a brainstem flip-flop switch, consisting of mutually inhibitory REM-off and REM-on areas in the mesopontine tegmentum. Each side contains GABA (gamma-aminobutyric acid)-ergic neurons that heavily innervate the other. The REM-on area also contains two populations of glutamatergic neurons. One set projects to the basal forebrain and regulates EEG components of REM sleep, whereas the other projects to the medulla and spinal cord and regulates atonia during REM sleep. The mutually inhibitory interactions of the REM-on and REM-off areas may form a flip-flop switch that sharpens state transitions and makes them vulnerable to sudden, unwanted transitions-for example, in narcolepsy.  相似文献   

20.
Commitment to the B-lymphoid lineage depends on the transcription factor Pax5.   总被引:77,自引:0,他引:77  
S L Nutt  B Heavey  A G Rolink  M Busslinger 《Nature》1999,401(6753):556-562
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号