首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang DT  Hunt HW  Zhuang M  Ohi MD  Holton JM  Schulman BA 《Nature》2007,445(7126):394-398
Ubiquitin-like proteins (UBLs) are conjugated by dynamic E1-E2-E3 enzyme cascades. E1 enzymes activate UBLs by catalysing UBL carboxy-terminal adenylation, forming a covalent E1 throught UBL thioester intermediate, and generating a thioester-linked E2 throught UBL product, which must be released for subsequent reactions. Here we report the structural analysis of a trapped UBL activation complex for the human NEDD8 pathway, containing NEDD8's heterodimeric E1 (APPBP1-UBA3), two NEDD8s (one thioester-linked to E1, one noncovalently associated for adenylation), a catalytically inactive E2 (Ubc12), and MgATP. The results suggest that a thioester switch toggles E1-E2 affinities. Two E2 binding sites depend on NEDD8 being thioester-linked to E1. One is unmasked by a striking E1 conformational change. The other comes directly from the thioester-bound NEDD8. After NEDD8 transfer to E2, reversion to an alternate E1 conformation would facilitate release of the E2 throught NEDD8 thioester product. Thus, transferring the UBL's thioester linkage between successive conjugation enzymes can induce conformational changes and alter interaction networks to drive consecutive steps in UBL cascades.  相似文献   

2.
李双月  苏华波 《广西科学》2018,25(3):262-267,278
Neural precursor cell-expressed developmentally downregulated 8(NEDD8)是类泛素蛋白家族的一员,其结构与泛素相似,通过E1激活酶、E2结合酶和E3连接酶等酶促级联反应对蛋白进行翻译后修饰,这一过程即为neddylation。Neddylation异常已被证实与癌症、神经退行性疾病和先天性心脏病等多种疾病密切相关。近年来,neddylation和deneddylation(底物上的NEDD8在deneddylation酶的作用下被去除,称为deneddylation)在心血管系统中的作用备受关注,本文将主要阐述neddylation的生物学过程及其在心脏生物学中的作用。  相似文献   

3.
Li W  Tu D  Brunger AT  Ye Y 《Nature》2007,446(7133):333-337
In eukaryotic cells, many short-lived proteins are conjugated with Lys 48-linked ubiquitin chains and degraded by the proteasome. Ubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2) and a ligase (E3). Most ubiquitin ligases use either a HECT (homologous to E6-associated protein C terminus) or a RING (really interesting new gene) domain to catalyse polyubiquitination, but the mechanism of E3 catalysis is poorly defined. Here we dissect this process using mouse Ube2g2 (E2; identical at the amino acid level to human Ube2g2) and human gp78 (E3), an endoplasmic reticulum (ER)-associated conjugating system essential for the degradation of misfolded ER proteins. We demonstrate by expressing recombinant proteins in Escherichia coli that Ube2g2/gp78-mediated polyubiquitination involves preassembly of Lys 48-linked ubiquitin chains at the catalytic cysteine of Ube2g2. The growth of Ube2g2-anchored ubiquitin chains seems to be mediated by an aminolysis-based transfer reaction between two Ube2g2 molecules that each carries a ubiquitin moiety in its active site. Intriguingly, polyubiquitination of a substrate can be achieved by transferring preassembled ubiquitin chains from Ube2g2 to a lysine residue in a substrate.  相似文献   

4.
Wiener R  Zhang X  Wang T  Wolberger C 《Nature》2012,483(7391):618-622
Histones are ubiquitinated in response to DNA double-strand breaks (DSB), promoting recruitment of repair proteins to chromatin. UBC13 (also known as UBE2N) is a ubiquitin-conjugating enzyme (E2) that heterodimerizes with UEV1A (also known as UBE2V1) and synthesizes K63-linked polyubiquitin (K63Ub) chains at DSB sites in concert with the ubiquitin ligase (E3), RNF168 (ref. 3). K63Ub synthesis is regulated in a non-canonical manner by the deubiquitinating enzyme, OTUB1 (OTU domain-containing ubiquitin aldehyde-binding protein 1), which binds preferentially to the UBC13~Ub thiolester. Residues amino-terminal to the OTU domain, which had been implicated in ubiquitin binding, are required for binding to UBC13~Ub and inhibition of K63Ub synthesis. Here we describe structural and biochemical studies elucidating how OTUB1 inhibits UBC13 and other E2 enzymes. We unexpectedly find that OTUB1 binding to UBC13~Ub is allosterically regulated by free ubiquitin, which binds to a second site in OTUB1 and increases its affinity for UBC13~Ub, while at the same time disrupting interactions with UEV1A in a manner that depends on the OTUB1 N terminus. Crystal structures of an OTUB1-UBC13 complex and of OTUB1 bound to ubiquitin aldehyde and a chemical UBC13~Ub conjugate show that binding of free ubiquitin to OTUB1 triggers conformational changes in the OTU domain and formation of a ubiquitin-binding helix in the N terminus, thus promoting binding of the conjugated donor ubiquitin in UBC13~Ub to OTUB1. The donor ubiquitin thus cannot interact with the E2 enzyme, which has been shown to be important for ubiquitin transfer. The N-terminal helix of OTUB1 is positioned to interfere with UEV1A binding to UBC13, as well as with attack on the thiolester by an acceptor ubiquitin, thereby inhibiting K63Ub synthesis. OTUB1 binding also occludes the RING E3 binding site on UBC13, thus providing a further component of inhibition. The general features of the inhibition mechanism explain how OTUB1 inhibits other E2 enzymes in a non-catalytic manner.  相似文献   

5.
The activation of ubiquitin and related protein modifiers is catalysed by members of the E1 enzyme family that use ATP for the covalent self-attachment of the modifiers to a conserved cysteine. The Escherichia coli proteins MoeB and MoaD are involved in molybdenum cofactor (Moco) biosynthesis, an evolutionarily conserved pathway. The MoeB- and E1-catalysed reactions are mechanistically similar, and despite a lack of sequence similarity, MoaD and ubiquitin display the same fold including a conserved carboxy-terminal Gly-Gly motif. Similar to the E1 enzymes, MoeB activates the C terminus of MoaD to form an acyl-adenylate. Subsequently, a sulphurtransferase converts the MoaD acyl-adenylate to a thiocarboxylate that acts as the sulphur donor during Moco biosynthesis. These findings suggest that ubiquitin and E1 are derived from two ancestral genes closely related to moaD and moeB. Here we present the crystal structures of the MoeB-MoaD complex in its apo, ATP-bound, and MoaD-adenylate forms, and highlight the functional similarities between the MoeB- and E1-substrate complexes. These structures provide a molecular framework for understanding the activation of ubiquitin, Rub, SUMO and the sulphur incorporation step during Moco and thiamine biosynthesis.  相似文献   

6.
Structural insights into phosphoinositide 3-kinase catalysis and signalling   总被引:12,自引:0,他引:12  
Walker EH  Perisic O  Ried C  Stephens L  Williams RL 《Nature》1999,402(6759):313-320
Phosphoinositide 3-kinases (PI3Ks) are ubiquitous lipid kinases that function both as signal transducers downstream of cell-surface receptors and in constitutive intracellular membrane and protein trafficking pathways. All PI3Ks are dual-specificity enzymes with a lipid kinase activity which phosphorylates phosphoinositides at the 3-hydroxyl, and a protein kinase activity. The products of PI3K-catalysed reactions, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), PtdIns(3,4)P2 and PtdIns(3)P, are second messengers in a variety of signal transduction pathways, including those essential to cell proliferation, adhesion, survival, cytoskeletal rearrangement and vesicle trafficking. Here we report the 2.2 A X-ray crystallographic structure of the catalytic subunit of PI3Kgamma, the class I enzyme that is activated by heterotrimeric G-protein betagamma subunits and Ras. PI3Kgamma has a modular organization centred around a helical-domain spine, with C2 and catalytic domains positioned to interact with phospholipid membranes, and a Ras-binding domain placed against the catalytic domain where it could drive allosteric activation of the enzyme.  相似文献   

7.
8.
酵母Elp3是Elongator复合物的催化亚基,可参与组蛋白乙酰化修饰与基因转录延伸.生物信息学分析及有关研究表明Elp3除组蛋白乙酰转移酶(Histone acetyltranferase,HAT)活性外,可能还拥有组蛋白去甲基化酶活性.本文以yElp3的pYES2yElp3质粒为模板,PCR获得yElp3基因全长,插入改造过的毕赤酵母表达载体pPIC9KH,转化巴斯德毕赤酵母GS115菌株.经表型鉴定、PCR分析及G418筛选获Mut+型多拷贝整合菌,经0.5%的甲醇诱导和Ni-NTA纯化,得到目的蛋白并对其进行体外酶活测定.SDS-PAGE分析表明yElp3在毕赤酵母中实现了高效分泌表达,Western印迹证实得到的蛋白为yElp3.OPA法测得纯化蛋白拥有较好的HAT活性,具有生物活性的Elp3蛋白的获得为体外测定其第二结构域是否有催化活性奠定了基础.  相似文献   

9.
Salmeen A  Andersen JN  Myers MP  Meng TC  Hinks JA  Tonks NK  Barford D 《Nature》2003,423(6941):769-773
The second messenger hydrogen peroxide is required for optimal activation of numerous signal transduction pathways, particularly those mediated by protein tyrosine kinases. One mechanism by which hydrogen peroxide regulates cellular processes is the transient inhibition of protein tyrosine phosphatases through the reversible oxidization of their catalytic cysteine, which suppresses protein dephosphorylation. Here we describe a structural analysis of the redox-dependent regulation of protein tyrosine phosphatase 1B (PTP1B), which is reversibly inhibited by oxidation after cells are stimulated with insulin and epidermal growth factor. The sulphenic acid intermediate produced in response to PTP1B oxidation is rapidly converted into a previously unknown sulphenyl-amide species, in which the sulphur atom of the catalytic cysteine is covalently linked to the main chain nitrogen of an adjacent residue. Oxidation of PTP1B to the sulphenyl-amide form is accompanied by large conformational changes in the catalytic site that inhibit substrate binding. We propose that this unusual protein modification both protects the active-site cysteine residue of PTP1B from irreversible oxidation to sulphonic acid and permits redox regulation of the enzyme by promoting its reversible reduction by thiols.  相似文献   

10.
Convergent evolution of similar function in two structurally divergent enzymes   总被引:10,自引:0,他引:10  
An example of two related enzymes that catalyse similar reactions but possess different active sites is provided by comparing the structure of Escherichia coli thioredoxin reductase with glutathione reductase. Both are dimeric enzymes that catalyse the reduction of disulphides by pyridine nucleotides through an enzyme disulphide and a flavin. Human glutathione reductase contains four structural domains within each molecule: the flavin-adenine dinucleotide (FAD)- and nicotinamide-adenine dinucleotide phosphate (NADPH)-binding domains, the 'central' domain and the C-terminal domain that provides the dimer interface and part of the active site. Although both enzymes share the same catalytic mechanism and similar tertiary structures, their active sites do not resemble each other. We have determined the crystal structure of E. coli thioredoxin reductase at 2 A resolution, and show that thioredoxin reductase lacks the domain that provides the dimer interface in glutathione reductase, and forms a completely different dimeric structure. The catalytically active disulphides are located in different domains on opposite sides of the flavin ring system. This suggests that these enzymes diverged from an ancestral nucleotide-binding protein and acquired their disulphide reductase activities independently.  相似文献   

11.
A ubiquitin-like system mediates protein lipidation   总被引:49,自引:0,他引:49  
Autophagy is a dynamic membrane phenomenon for bulk protein degradation in the lysosome/vacuole. Apg8/Aut7 is an essential factor for autophagy in yeast. We previously found that the carboxy-terminal arginine of nascent Apg8 is removed by Apg4/Aut2 protease, leaving a glycine residue at the C terminus. Apg8 is then converted to a form (Apg8-X) that is tightly bound to the membrane. Here we report a new mode of protein lipidation. Apg8 is covalently conjugated to phosphatidylethanolamine through an amide bond between the C-terminal glycine and the amino group of phosphatidylethanolamine. This lipidation is mediated by a ubiquitination-like system. Apg8 is a ubiquitin-like protein that is activated by an E1 protein, Apg7 (refs 7, 8), and is transferred subsequently to the E2 enzymes Apg3/Aut1 (ref. 9). Apg7 activates two different ubiquitin-like proteins, Apg12 (ref. 10) and Apg8, and assigns them to specific E2 enzymes, Apg10 (ref. 11) and Apg3, respectively. These reactions are necessary for the formation of Apg8-phosphatidylethanolamine. This lipidation has an essential role in membrane dynamics during autophagy.  相似文献   

12.
Jin J  Li X  Gygi SP  Harper JW 《Nature》2007,447(7148):1135-1138
Modification of proteins with ubiquitin or ubiquitin-like proteins (UBLs) by means of an E1-E2-E3 cascade controls many signalling networks. Ubiquitin conjugation involves adenylation and thioesterification of the carboxy-terminal carboxylate of ubiquitin by the E1-activating enzyme Ube1 (Uba1 in yeast), followed by ubiquitin transfer to an E2-conjugating enzyme through a transthiolation reaction. Charged E2s function with E3s to ubiquitinate substrates. It is currently thought that Ube1/Uba1 is the sole E1 for charging of E2s with ubiquitin in animals and fungi. Here we identify a divergent E1 in vertebrates and sea urchin, Uba6, which specifically activates ubiquitin but not other UBLs in vitro and in vivo. Human Uba6 and Ube1 have distinct preferences for E2 charging in vitro, and their specificity depends in part on their C-terminal ubiquitin-fold domains, which recruit E2s. In tissue culture cells, Uba6 is required for charging a previously uncharacterized Uba6-specific E2 (Use1), whereas Ube1 is required for charging the cell-cycle E2s Cdc34A and Cdc34B. Our data reveal unexpected complexity in the pathways that control the conjugation of ubiquitin, in which dual E1s orchestrate the charging of distinct cohorts of E2s.  相似文献   

13.
Tomita K  Ishitani R  Fukai S  Nureki O 《Nature》2006,443(7114):956-960
CCA-adding polymerase matures the essential 3'-CCA terminus of transfer RNA without any nucleic-acid template. However, it remains unclear how the correct nucleotide triphosphate is selected in each reaction step and how the polymerization is driven by the protein and RNA dynamics. Here we present complete sequential snapshots of six complex structures of CCA-adding enzyme and four distinct RNA substrates with and without CTP (cytosine triphosphate) or ATP (adenosine triphosphate). The CCA-lacking RNA stem extends by one base pair to force the discriminator nucleoside into the active-site pocket, and then tracks back after incorporation of the first cytosine monophosphate (CMP). Accommodation of the second CTP clamps the catalytic cleft, inducing a reorientation of the turn, which flips C74 to allow CMP to be accepted. In contrast, after the second CMP is added, the polymerase and RNA primer are locked in the closed state, which directs the subsequent A addition. Between the CTP- and ATP-binding stages, the side-chain conformation of Arg 224 changes markedly; this is controlled by the global motion of the enzyme and position of the primer terminus, and is likely to achieve the CTP/ATP discrimination, depending on the polymerization stage. Throughout the CCA-adding reaction, the enzyme tail domain firmly anchors the TPsiC-loop of the tRNA, which ensures accurate polymerization and termination.  相似文献   

14.
Shomura Y  Yoon KS  Nishihara H  Higuchi Y 《Nature》2011,479(7372):253-256
Membrane-bound respiratory [NiFe]-hydrogenase (MBH), a H(2)-uptake enzyme found in the periplasmic space of bacteria, catalyses the oxidation of dihydrogen: H(2)?→?2H(+)?+?2e(-) (ref. 1). In contrast to the well-studied O(2)-sensitive [NiFe]-hydrogenases (referred to as the standard enzymes), MBH has an O(2)-tolerant H(2) oxidation activity; however, the mechanism of O(2) tolerance is unclear. Here we report the crystal structures of Hydrogenovibrio marinus MBH in three different redox conditions at resolutions between 1.18 and 1.32??. We find that the proximal iron-sulphur (Fe-S) cluster of MBH has a [4Fe-3S] structure coordinated by six cysteine residues--in contrast to the [4Fe-4S] cubane structure coordinated by four cysteine residues found in the proximal Fe-S cluster of the standard enzymes--and that an amide nitrogen of the polypeptide backbone is deprotonated and additionally coordinates the cluster when chemically oxidized, thus stabilizing the superoxidized state of the cluster. The structure of MBH is very similar to that of the O(2)-sensitive standard enzymes except for the proximal Fe-S cluster. Our results give a reasonable explanation why the O(2) tolerance of MBH is attributable to the unique proximal Fe-S cluster; we propose that the cluster is not only a component of the electron transfer for the catalytic cycle, but that it also donates two electrons and one proton crucial for the appropriate reduction of O(2) in preventing the formation of an unready, inactive state of the enzyme.  相似文献   

15.
Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex   总被引:39,自引:0,他引:39  
SCF complexes are the largest family of E3 ubiquitin-protein ligases and mediate the ubiquitination of diverse regulatory and signalling proteins. Here we present the crystal structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF complex, which shows that Cul1 is an elongated protein that consists of a long stalk and a globular domain. The globular domain binds the RING finger protein Rbx1 through an intermolecular beta-sheet, forming a two-subunit catalytic core that recruits the ubiquitin-conjugating enzyme. The long stalk, which consists of three repeats of a novel five-helix motif, binds the Skp1-F boxSkp2 protein substrate-recognition complex at its tip. Cul1 serves as a rigid scaffold that organizes the Skp1-F boxSkp2 and Rbx1 subunits, holding them over 100 A apart. The structure suggests that Cul1 may contribute to catalysis through the positioning of the substrate and the ubiquitin-conjugating enzyme, and this model is supported by Cul1 mutations designed to eliminate the rigidity of the scaffold.  相似文献   

16.
Crystal structure of the anthrax lethal factor.   总被引:13,自引:0,他引:13  
Lethal factor (LF) is a protein (relative molecular mass 90,000) that is critical in the pathogenesis of anthrax. It is a highly specific protease that cleaves members of the mitogen-activated protein kinase kinase (MAPKK) family near to their amino termini, leading to the inhibition of one or more signalling pathways. Here we describe the crystal structure of LF and its complex with the N terminus of MAPKK-2. LF comprises four domains: domain I binds the membrane-translocating component of anthrax toxin, the protective antigen (PA); domains II, III and IV together create a long deep groove that holds the 16-residue N-terminal tail of MAPKK-2 before cleavage. Domain II resembles the ADP-ribosylating toxin from Bacillus cereus, but the active site has been mutated and recruited to augment substrate recognition. Domain III is inserted into domain II, and seems to have arisen from a repeated duplication of a structural element of domain II. Domain IV is distantly related to the zinc metalloprotease family, and contains the catalytic centre; it also resembles domain I. The structure thus reveals a protein that has evolved through a process of gene duplication, mutation and fusion, into an enzyme with high and unusual specificity.  相似文献   

17.
S H Shen  L Bastien  B I Posner  P Chrétien 《Nature》1991,352(6337):736-739
The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.  相似文献   

18.
L Lebioda  B Stec 《Nature》1988,333(6174):683-686
Enolase or 2-phospho-D-glycerate hydrolase catalyses the dehydration of 2-phosphoglycerate to phosphoenolpyruvate, which in turn is converted by pyruvate kinase to pyruvate. We describe here the crystallographic determination of the structure of yeast enolase at high resolution (2.25 A) and an analysis of the structural homology between enolase, pyruvate kinase and triose phosphate isomerase. Each of the two subunits of enolase forms two distinctive domains. The larger domain (residues 143-420) is a regular 8-fold beta/alpha-barrel, as first found in triose phosphate isomerase, and later in pyruvate kinase and 11 other functionally different enzymes. An analysis of the molecular geometries of enolase and pyruvate kinase based on the roughly 8-fold symmetry of the barrel showed a structural homology better than expected for proteins related by convergent evolution. We argue that enolase and pyruvate kinase have evolved from a common ancestral multifunctional enzyme which could process phosphoenolpyruvate in both directions along the glycolytic pathway. There is structural and sequence evidence that muconate lactonizing enzyme later evolved from enolase.  相似文献   

19.
20.
人Elp3蛋白(human Elongator protein 3,hElp3)是组蛋白乙酰转移酶(Histone acetyltranferase,HAT)Elongator复合物的催化亚基,可参与组蛋白乙酰化修饰与基因转录延伸,其功能异常与人类多种疾病相关.目前对其羧基末端高度保守的第二功能域研究较少.以pYES2hElp3质粒为模板,PCR获hElp3基因全长,插入改造的毕赤酵母表达载体pPIC9KH,转化巴斯德毕赤酵母菌GS115菌株.经表型鉴定、PCR分析和G418筛选得到Mut+型多拷贝整合菌.0.5%的甲醇诱导hElp3高效分泌表达,Ni-NTA纯化及Western印迹证实获目的蛋白.OPA法测得其拥有良好的HAT活性,为体外测定其第二结构域是否拥有催化活性奠定了基础,对筛选抑制其HAT活性的小分子药物用于疾病治疗研究至关重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号