首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Previous studies found extremely high d-excess in both ice core and glacial melt water in Dasuopu glacier, Xixiabangma, middle of Himalayas. These values are much higher than the global average and those measured in southwest monsoon precipitation. The d-excess variation in over one year at Nyalam station will clarify this phenomenon. Studies show that the high d-excess is related to the seasonal variation of moisture transport to this region. The d-excess values are low during the southwest monsoon active periods, when moisture originated from the humid ocean surface. The d-excess values are higher in non-monsoon months, when moisture is derived from westerly transport. Winter and spring precipitation accounts for a substantial portion of the annual precipitation, resulting in higher d-excess in the yearly precipitation in the middle of Himalayas than other parts of the southern Tibetan Plateau. This finding reveals that the precipitation in the middle of Himalayas is not purely from southwest monsoon, but a large portion from the westerly transport, which is very important for ice core study in this area.  相似文献   

2.
Whether the Tibetan Plateau is a significant dust source area is of great importance, because this is related to the understanding of sources, accumulation and environmental effects of dusts on the Tibetan Plateau and inthe Far East-Pacific Ocean regions as well as to the evointion of coupling of the Tibetan Plateau and atmaspbere-oeean-continent exchange. Synoptic dynamics and remote sensing tracing of a dust storm on 3 to 5 March, 2003 in Lhasa onSouth Tibet demonstrate that the Tibetan Plateau possessesall factors and conditions of generating dust storms. Accompanied with this dust storm is a strong ascending stream onthe Plateau which has raised various sizes of durst particlesinto different levels. The lifted coarse particles were largelyfallen down and accumulated as loess on the eastern TibetanPlateau, and the fine particles were translated by the westerly jet and subsided in the northern Pacific Ocean. The spa-tial-temporal distribution of dust-storms between years 1961and 2000 ou the Plateau shows that duststorms mainly occurin winter and early spring with high frequency, and tile pathof dust storm moves gradually from south to north, which isclosely coupled with the northward moving of the westerlyjet from winter to spring over the Tibetan Plateau. Com-pared with other twelve dust source areas in China. the Ti-betan Plateau is one of the key dust souree areas for thelong-distance transport because its high occurring frequencyand elevation cause fine particles easily to be lifted into thezone of the westerly jet.  相似文献   

3.
Yao  TanDong  Zhou  Hang  Yang  XiaoXin 《科学通报(英文版)》2009,54(16):2724-2731
The δ^18O variation in precipitation acquired from 28 stations within the network of Tibetan Observation and Research Platform (TORP) is studied, with the focus on the altitude effect of δ^18O in river water during monsoon precipitation in an effort to understand the monsoon influence on isotopic composition in annual river water. It is found that δ^18O in precipitation on the Plateau is influenced by different moisture sources, with significant Indian monsoon influence on δ^18O composition in plateau precipitation and river water. The δ^18O of water bodies in the monsoon domain is generally more depleted than that in the westerly domain, suggesting gradual rainout of southwesterly borne marine moisture in the course of long-distance transportation and lifting over the Himalayas. The lapse rate of δ^18O in river water with altitude is the largest during monsoon precipitation, due to the increased temperature vertical gradient over the southern Plateau region controlled by monsoon circulation. The combination of δ^18O in river water in monsoon (wet) and non-monsoon (dry) seasons shows a larger lapse rate than that in non-monsoon (dry) season alone. As the altitude effect of δ^18O in precipitation and river water on the Tibetan Plateau results from the combined effect of monsoon moisture supply and westerly moisture supply, the δ^18O composition and its altitude effect on the Plateau during monsoon seasons should be considered in the reconstruction of paleoelevation of the Tibetan Plateau.  相似文献   

4.
Located in the low latitude region of the northeastern Indian Ocean, the Bay of Bengal represents one of the largest marginal seas in the world. The Bengal Fan hosts erosional products mostly from Himalayas and is under the influence of the Indian monsoon system. The Bengal Fan has thus been one of the ideal places for studying the uplift of the Tibet Plateau and the history of the Indian monsoon[1―8]. The intensity of the Indian monsoon is controlled by secular variations in insola- ti…  相似文献   

5.
Xu  YanWei  Kang  ShiChang  Zhang  YuLan  Zhang  YongJun 《科学通报(英文版)》2011,56(14):1511-1517
During the summer monsoon season,the moisture of precipitation events in southern and central regions of the Tibetan Plateau is mainly moisture from the Indian Ocean transported by the Indian monsoon and terrestrial vapor derived from the surface of the Tibetan Plateau.However,the respective contributions of these two types of moisture are not clear.From June to September,the excess deuterium values of precipitation and river water in the Nam Co basin are higher than those for the southern Tibetan Plateau.This reflects the mixing of evaporation from Nam Co and local atmospheric vapor.On the basis of theory for estimating the contribution of evaporative vapor from surface water bodies to atmospheric vapor and relative stable isotopes in water bodies (precipitation,river water,atmospheric moisture and lake water),this study preliminarily estimates that the average contribution of evaporation from the Lake Nam Co to local atmospheric vapor has varied from 28.4% to 31.1% during the summer monsoon season in recent years.  相似文献   

6.
Analysis of daily precipitation samples for stable oxygen isotopes (δ^18O) collected at the Shiquanhe and Gerze (Gaize, Gertse) stations in the Ngari (Ali) region on the western Tibetan Plateau indicates that air temperature affects the δ^18O variations in precipitation at these stations. In summer, Shiquanhe and Gerze show strongly similar trends in precipitation δ^18O, especially in simultaneous precipitation events. Moreover, both stations experienced low δ^18O values in precipitation during the active monsoon period, resulting from the southwest monsoon (the summer phase of the Indian monsoon). However, during the break monsoon period (during the summer rainy season, when the monsoon circulation is disrupted), δ^18O values in summer precipitation remain relatively high and local moisture recycling generally controls the moisture sources. Air temperature correlations with δ^18O strengthen during the non-monsoon period (January--June, and October--December) due to continental air masses and the westerlies. In addition, evaporation also influences the δ^18O variations in precipitation. The observed temporal and spatial variations of δ^18O in precipitation on the western Tibetan Plateau and adjacent regions show that the late May and early June-the late August and early September time frame provides an important period for the transportation of moisture from various sources on the Tibetan Plateau, and that the region of the West Kunlun-Tanggula Ranges acts as a significant climatic divide on the Plateau, perhaps for all of western China.  相似文献   

7.
Origin of summer monsoon rainfall identified by δ18O in precipitation   总被引:2,自引:0,他引:2  
A negative correlation between δ^18O in monsoon precipitation and f, the ratio of precipitable water in monsoon region to that in water source area, is hypothesized. Using the Rayleigh model, a new method for identifying origin of summer monsoon rainfall is developed based on the hypothesis. In order to validate the method, the isotopic data at New Delhi, a typical station in the southwest monsoon region, and Hong Kong, a typical station in the southeast monsoon region, were collected and analyzed for case studies. The case studies indicate that the water source areas of the monsoon rairdall at the two stations identified by the method are accordant with the general atmosphere circulation patterns. The method developed in this paper is significantly important for tracing the origin of summer monsoon precipitation.  相似文献   

8.
The relationship of species and abundance between the diatoms in the water and sediments from the southern South China Sea (SCS) were discussed, and the key environmental controlling factors were also investigated. Studies show that the diatom abundance is high in both water and sediments in the southeast part of the southern SCS and the varying trend is similar, while in the northwest part, the abundance is low, and the varying trend is different. The dominant diatom species are Thalassionema nitzschioides and Nitzschia bicapitata in water, and T. nitzschioides and Chaetoceros messanensis in sediments. The diatom species of small size and thin shell in water are more than in the sediments, while the diatom species of large size and thick shell in water are less. The percentage of species T. nitzschioides is higher in water of southeast part than in that of northwest part, but it is similar in sediments of both areas. It is shown that the southwest monsoon is the important factor influencing diatom abundance and T. nitzschioides percentage, and when the southwest monsoon is well developed, the distribution of diatom abundance and T. nitzschioides percentage are consistent in both water and sediments of the study area.  相似文献   

9.
The δ 18O records of ostracode shells in sediments of core QH-2000 from Qinghai Lake can be used as a better proxy to reflect monsoon changes. Low monsoon precipitation between 17.5 and 11 cal. ka BP is indicated by positive δ 18O values averaging 2.37‰. A fast shift in δ 18O from positive at 11 cal. ka BP to negative at 10 cal. ka BP indicates sharp increase of monsoon precipitation. An interval of generally high monsoon precipitation is observed between 10 and 6 cal. ka BP with δ 18O values averaging -2.15‰. Decrease of monsoon precipitation between 6 and 2.5 cal. ka BP is indicated by positive δ 18O values. δ 18O keeps positive values averaging 3.0‰ between 2.5 and 0 cal. ka BP suggesting low high monsoon precipitation. The climatic changes indicated by δ 18O records of ostracode shells in sedi- ments of core QH-2000 from Qinghai Lake and our broader regional comparison show that the climate in Qinghai Lake since the late Glacial is probably controlled by southwest monsoon other than southeast monsoon.  相似文献   

10.
Meng  XianWei  Xia  Peng  Zheng  Jun  Wang  XiangQin 《科学通报(英文版)》2011,56(6):547-551
Evolution of the East Asian monsoon and its response to uplift of the Tibetan Plateau has been investigated in the study of global change. Core sediment samples drilled in the South China Sea during ODP Leg184 are the best materials for studying long-term variability of the East Asian monsoon. R-mode factor analysis of major elements in the fine grain-sized carbonate-free sediments (<4 μm) of the upper 185 mcd splice of ODP Site 1146 drilled during Leg184 in the South China Sea shows that Ti, TFe2O3, MgO, K2O, P, CaO, and Al2O3 are representative of a terrestrial factor. The variation in the terrestrial factor score is subject to chemical erosion in the source region and thus indicates the evolution of the East Asian summer monsoon. The terrestrial factor score has three stepwise decreases at ~1.3 Ma, ~0.9 Ma, and ~0.6 Ma, indicating the phased weakening of the East Asian summer monsoon is related to wholly stepwise, quick uplifts of the Tibetan Plateau since 1.8 Ma. The periodic fluctuation of the terrestrial factor score since ~0.6 Ma indicates that the glacial-interglacial cycles have been the main force driving the evolution of the East Asian monsoon. As in the case of Chinese loess, the long-term evolution of the East Asian monsoon recorded in sediments of the South China Sea reflects a coupled effect of the glacial-interglacial cycle and uplift of the Tibetan Plateau.  相似文献   

11.
Chemical weathering of continental silicates significantly influences global climate change,earth surface processes,material cy-cling and oceanic chemical composition.How to quantitatively reconstruct chemical weathering history has become an important issue in global change research.Chemical index of alteration(CIA) has been widely used as a quantitative indicator for estimating the degree of silicate weathering.However,its method of calculation and the limitations of its application are not well understood.In this study,we calculated CIA values from suspended particulate matter collected from the mainstream and major tributaries of the Changjiang River.The values yielded considerable variations at different temporal and spatial scales.The average CIA values increased from the upper to middle-lower reaches,and were lower in the suspended samples taken during the flood than in the dry season.The spatial variation in the CIA is predominantly controlled by basinal monsoon climate.In contrast,the temporal varia-tion in the Changjiang River basin is controlled mainly by the changing provenance of suspended samples in relation to the shift of the precipitation zone.The CIA probably indicates the integrated weathering history in the river basin,and thus,cannot be used as a reliable proxy of instantaneous chemical weathering.Furthermore,the calculation method and hydrodynamic sorting also influence the CIA values.Therefore,caution should be taken when using the CIA as a proxy for studying chemical weathering from different regions.  相似文献   

12.
A weathered deposit in South China is widespread on the coastal areas of Fujian and Guangdong provinces, China. This deposit consists of slightly cemented, medium- to fine-grained sands, and is characterized by its colors of red, brown red, light reddish brown or dark yellowish orange, and is usually called "Old Red Sand". The uncertainty in its formation age has been a major obstacle to the study of this type of deposit. In this paper, optically stimulated luminescence (OSL) techniques were used to date the "Old Red Sand" sediments from Jinjiang, Fujian Province, China. The effect of the geochemical behavior of uranium and thorium in sediment during chemical weathering on estimation of annual dose was investigated. The results show that the change in annual dose due to weathering poses a major problem for the optical dating of such weathered sediments. The optical dating of these weathered deposits will produce erroneous ages if average annual dose during burial cannot be correctly estimated. For the profiles studied, the OSL dates obtained on samples from the upper part do not represent the burial age of the samples. It is highly likely that they are underestimated due mainly to the accumulated radioactive elements as a result of chemical weathering. It is concluded that changes in annual dose due to chemical weathering must be considered when dating similar sediments in South China. With a detailed analysis of the OSL dating results, the chronology of the marine terraces in this area was suggested. The lowest terrace was formed at -3.5 ka and the second terrace was dated to -74 ka. The age of the highest terrace may not be established accurately, but is inferred to be older than the apparent OSL date of -77 ka and so is the Paleolithic artifacts from it.  相似文献   

13.
Magnetotelluric (MT) survey has been carried out in the eastern margin of the Tibetan Plateau and its neighboring Shimian-Leshan area, Sichuan Province. Analysis of this MT data reveals that the electric structure of the Tibetan Plateau differ much from that of the Sichuan block. In general, the electric resistivity of crust beneath the Sichuan block in the east is larger than that of the eastern margin of the Tibetan Plateau in the west. The crust of the plateau is divided into upper, middle, and lower layers. The middle crust is a low resistivity layer with minimum down to 3-10Ωm about 10-15 km thick. It presumably contains partial melt and/or salt-bearing fluids with low viscosity, prone to deform and flow, producing a "channel flow" under the southeastward squeeze of the eastern Tibetan Plateau. This low-resistivity layer makes the upper crust decoupled mechanically from the lower crust. In the brittle upper crust, faults are dominated by left-lateral strike-slip and thrust motions, leading to surface rising and shallow earthquakes. The low-resistivity layer also cut the Xianshuihe-Anninghe fault zone into two sections vertically. In this region, the thicknesses of upper, middle, and lower crust vary laterally, producing a transitional zone in the eastern margin of the Tibetan Plateau characterized by thicker crust and higher elevation in the west and thinner crust and lower elevation in the east.  相似文献   

14.
The southeastern Chinese Loess Plateau is the terminal deposition area of dusts transported by the East Asian winter monsoon and the frontal area penetrated by the East Asian summer monsoon,and thus a climate sensitive region.This paper reports a rock magnetic study of a Quaternary loess-paleosol section in such a region.We tried to reconstruct the paleoclimate evolution history in the region during 1.95–0.40 Ma with magnetic parameters.The results show a general up-section decreasing trend of the ratio of HIRM/(SIRM–IRM100 mT),indicating a long-term decreasing trend of hematite coercivities in the deposits,which can be mainly related to the cooling and aridification trend of the environment in interglacial depositional area and glacial dust source region.The ratio,lf/ARM,widely used to reflect the variations of magnetic mineral grain size,manifests a long-term increasing trend of the magnetic mineral grain size and tends to indicate an overall weakening trend of the East Asian summer monsoon that controlled the pedogenic intensity.Although the regional multi-segmented paleoclimatic records revealed by several magnetic parameters in our study,the long-term Asian cooling and aridification trend inferred here is of global correlation significance.  相似文献   

15.
Whether climatic changes in high latitudes of the Northern Hemisphere since the last glaciation have effects on the Tibetan Plateau monsoon, and the variation characteristics of the Plateau monsoon itself are still not solved but of great significance. The 22-m high-resolution Ioess-paleosol sequence in the Hezuo Basin on the northeastern Tibetan Plateau demonstrates that the Plateau winter monsoon experienced a millennial variation similar to high latitude Northern Hemisphere, with cold events clearly correlated with Heinrich events but less for the warm events (Dansgarrd-Oeschger events). It may indicate that the climate system at high latitudes in the Northern Hemisphere had played an important role in both the Plateau monsoon and the high-level westerlies. On 10^4 year scale, there are two distinct anomalous changes, which are not found in the records from high latitude northern hemisphere, revealed by the loess grain size in the Hezuo Basin. One is that there was a considerable grain size increase at -36 kaBP, suggesting an abrupt enhancement of the Plateau winter monsoon at that time; the other is that, during 43--36 kaBP, the grain size decreased distinctly, indicating a notable weakening of the Plateau winter monsoon around that period. Both of the two anomalies suggest that the Tibetan climate may have been controlled by some other factors, besides the high latitude climatic changes in the Northern Hemisphere.  相似文献   

16.
An oxygen isotope record of a stalagmite from Huanglong Cave in the eastern Qinghai-Tibet Plateau dated with 230Th and 210Pb methods provides variations of the Asian monsoon with an average resolu-tion of 1 year over the past 50 years. This study shows that the δ18O of dripwater in the cave represents the annual mean δ18O of local meteoric precipitation and the stalagmites were deposited in isotopic equilibrium. A comparison of the stalagmite δ18O record with instrumentally meteorological data indi-cates that shifts of the δ18O are largely controlled by the amount effect of meteoric precipitation con-veyed through the southwest monsoon(the Indian monsoon) and less affected by temperature. Therefore,the variations of δ18O record reflect the changes in monsoon precipitation on inter-annual time scales under the influence of the southwest monsoon. Like many other stalagmite δ18O records in the Asian monsoon regions,the δ18O record of the stalagmite from Huanglong Cave also reveals a gradually enriched trend during the past 50 years,i.e. relatively enriched in 18O. This trend may indicate the decline of the Asian monsoon intensity which is consistent with the decrease of monsoon indices. The weakening of the modern Asian monsoon well matched with the temperature changes in strato-sphere,which may illustrate that the weakening of the monsoon mainly results from the lowering of solar radiation.  相似文献   

17.
A 310-cm-long sediment core, covering the last 10,200 years, was collected from Taro Co on the south- western Tibetan Plateau and analyzed for pollen, grain size and total inorganic carbon content. The pollen data showed that vegetation changed from alpine steppe to alpine meadow during 10,200-8,900 cal a BP, to alpine steppe dominated by Artemisia during 8,900-7,400 cal a BP, to alpine meadow during 7,400-3,300 cal a BP and to alpine steppe after 3,300 cal a BP. Correspondingly, the pollen, grain size and total inorganic carbon content results revealed climatic change in this area over four stages. The initial stage was from 10,200 to 8,900 cal a BP, during which the climate changed from cold-dry to warm-humid. The second stage (8,900-7,400 cal a BP) was characterized by a warm and dry climate. However, at approximately 7,400 cal a BP, the climate began to become cold andhumid, which continued until 3,300 cal a BP. The last stage, from 3,300 cal a BP to present, was characterized as cold and increasingly arid. Climatic events of the early and mid-late Holocene showed that the area was significantly affected by the westerlies. However, the mid-Holocene climate in Taro Co was controlled by the Indian monsoon. The mid-late Holocene depositional environment record of Taro Co was very important to further elaborate the degree of influence by the westerlies or Indian monsoon.  相似文献   

18.
Jiang  XiuYang  He  YaoQi  Shen  ChuanChou  Kong  XingGong  Li  ZhiZhong  Chang  YuWei 《科学通报(英文版)》2012,57(7):795-801
An absolute-dated, bi-decadal-resolution, stalagmite oxygen-isotopic time series from Shigao Cave reveals the evolution of summer monsoon precipitation over the past 9.9 ka BP in northern Guizhou Province, Southwest China. The  18O-inferred climate conditions are divisible into three distinct stages: (1) a maximum humid era from 9.9-6.6 ka BP; (2) a gradual declining precipitation interval between 6.6-1.6 ka BP; and (3) a relatively low precipitation time window after 1.6 ka BP. Consistency of contemporaneous stalagmite Holocene 18O records between Shigao and other caves in the Indian and East Asian monsoon realms support the effect of primary orbital solar forcings on monsoonal precipitation. However, statistical analysis shows a significant spatial asynchroneity of the Holocene Optimum termination in the Asian monsoon territory. The Holocene Optimum ended at 7.2-7.4 ka BP in Oman, located in the Indian monsoon region, and at 5.6-5.8 ka BP in Central China, in the East Asian monsoon zone. In Southwest China, the termination occurred between these periods, at 6.6-7.0 ka BP, and was influenced by both monsoon systems. We propose that this spatially asynchronous ending of Holocene Optimum in Asia may be attributed to sea surface temperature changes in the western tropical Pacific, which is a primary moisture source for the East Asian monsoon.  相似文献   

19.
《科学通报(英文版)》1999,44(24):2260-2260
The granite weathering in Longnan, Jiangxi, is represented by mineralogical changes of feldspars → montmorillonite, illite → kaolinite, halloysite f66 bauxite, with Na, Ca, Si, P, V, U and Sr being in a mobile state while Ti, Al, Fe, Sc, Th, Zr and Hf remaining relatively conservative. With the exception of Zr/Hf, Nb/Ta, Th/Sc, Zr/Nd and Sm/Nb, changes are notable in ratios between most of the trace elements. Re-distribution of REE and Y has taken place during the chemical weathering, and the REE patterns of weathered samples in the profile, with original characters of the parent rock still recognizable, has undergone some fractiona-tion. Generally, the extent of chemical weathering is the critical factor determining the mineralogical and chemical characteristics of the profiles and this must be taken into account in any study of tracing the provenance on the basis of mineralogical and trace element characteristics of the sediments.  相似文献   

20.
Wen  Rong  Tian  LiDe  Weng  YongBiao  Liu  ZhongFang  Zhao  ZhongPing 《科学通报(英文版)》2012,57(14):1693-1698
The lapse rate of water isotopes is used in the study of the hydrologic cycle as well as in the estimation of uplift of the Tibetan Plateau.The greater elevation contrast in the Southern Himalayas allows for a detailed discussion about this lapse rate.We analyze variations of 18δO in precipitation and river water between 1320 m and 6700 m elevations in the Southern Himalayas,and calculate the specific lapse rate of water 18δO.The results show that the multi-year average lapse rate in precipitation over this region is 0.15‰/100 m.The one-year average lapse rate is 0.17‰/100 m from three sites along the Southern Himalayas.The two results agree,but are much lower than the global average of 0.28‰/100 m.This work also shows that there is a difference in precipitation 18δO lapse rate between the monsoon and non-monsoon seasons.The calculated precipitation lapse rate is much lower than that in surface water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号