首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes in detail a new method via the extension predictable algorithm of the matter-element model of parallel structure tuning the parameters of the extension PID controller. In comparison with fuzzy and extension PID controllers, the proposed extension PID predictable controller shows higher control gains when system states are away from equilibrium, and retains a lower profile of control signals at the same time. Consequently, better control performance is achieved. Through the proposed tuning formula, the weighting factors of an extension-logic predictable controller can be systematically selected according to the control plant. An experimental example through industrial field data and site engineers' experience demonstrates the superior performance of the proposed controller over the fuzzy controller.  相似文献   

2.
In this paper, an intelligent control system based on recurrent neural fuzzy network is presented for complex, uncertain and nonlinear processes, in which a recurrent neural fuzzy network is used as controller (RNFNC) to control a process adaptively and a recurrent neural network based on recursive predictive error algorithm (RNNM) is utilized to estimate the gradient information ρy/ρu for optimizing the parameters of controller.Compared with many neural fuzzy control systems, it uses recurrent neural network to realize the fuzzy controller. Moreover, recursive predictive error algorithm (RPE) is im-plemented to construct RNNM on line. Lastly, in order to evaluate the performance of the proposed control system, the presented control system is applied to continuously stirred tank reactor (CSTR). Simulation comparisons, based on control effect and output error,with general fuzzy controller and feed-forward neural fuzzy network controller (FNFNC),are conducted. In addition, the rates of convergence of RNNM respectively using RPE algorithm and gradient learning algorithm are also compared. The results show that the proposed control system is better for controlling uncertain and nonlinear processes.  相似文献   

3.
For a class of continuous-time nonlinear system, a novel robust adaptive fuzzy controller is proposed by using of Lyapunov method. It is proven that the control algorithm is globally stable, the output tracking-error can convergence to a domain of zero under the assumptions. As a result, the system controlled has stronger robustness for disturbance and modeling error.  相似文献   

4.
A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.  相似文献   

5.
An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method.  相似文献   

6.
The problem of decentralized adaptive fuzzy control for a class of time-delayed interconnected nonlinear systems with unknown backlash-like hystersis is discussed. On the basis of the principle of variable structure control (VSC) and by using the fuzzy systems with linear adjustable parameters that are used to approximate plant unknown functions, a novel decentralized adaptive fuzzy control strategy with a supervisory controller is developed. A general method, which is modeled the backlash-like hysteresis, is proposed and removes the assumption that the boundedness of disturbance, and the slope of the backlash-like hystersis are known constants. Furthermore, the interconnection term is supposed to be pth-order polynomial in time-delayed states. In addition, the plant dynamic uncertainty and modeling errors are adaptively compensated by adjusting the parameters and gains on-line for each subsystems. By theoretical analysis, it is shown that the closed-loop fuzzy control systems are globally stable, with tracking error converging to zero. Simulation results demonstrate the effectiveness of the approach.  相似文献   

7.
8.
The advanced missile uses blended control of nero-fin and reaction-jet to improve missile maneuverability. The blended control design, which is multi-inputs and multi-outputs (MIMO), severe nonlinear, and model uncertain, is much more complex than conventional nero-fin control. A novel nonlinear backstepping control approach is proposed to design the blended autopilot. Missile model is reformed to a new one by state reconstruction technique so that it is easy to be handled by the backstepping method. Then a Lyapunov function is chosen to avoid oscillation caused in normal backstepping way when control parameters are mismatched. In distribution of both inputs, optimal energy logic is proposed. In addition, a fuzzy cerebellar model articulation controller (FCMAC) neural network is used to guarantee controller robustness to uncertainties. Finally, simulation results demonstrate the efficiency and advantages of the proposed method.  相似文献   

9.
A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.  相似文献   

10.
This paper examines the use in assisting naval operators in managing the of a fuzzy knowledge-based system (KBS) situation and threat assessment problem in a littoral environment. Under the scenario created involving air contacts in a littoral environment, the assessment of the KBS model is conducted and the results show that the correlation between assessment and human operation officers' judgment was high. The fuzzy KBS with its corresponding toolkits is much more flexible to be integrated with other components of a command and control system, while the fine-tuning of membership functions and fuzzy inference rules are intensive, this makes any further modification a non-trivial task.  相似文献   

11.
In this paper,the variable universe adaptive fuzzy controller based on variable gain H_∞ regulator(VGH_∞ R.) is designed to stabilize a quadruple inverted pendulum.The VGH_∞ R is a novel robust gain-scheduling approach.By utilizing VGH_∞ R technique,a more precise real-time feedback gain matrix,which is changing with states,is obtained.Via the variable gain matrix 10 state variables of quadruple inverted pendulum are transformed into a kind of synthesis error(E) and synthesis rate of change of error(EC) at sampling time.Therefore,the dimension of the multivariable system is reduced and the variable Universe adaptive fuzzy controller is built.Experiments illustrate the effectiveness of the proposed control scheme.  相似文献   

12.
The robust H∞ control problem for a class of uncertain Takagi-Sugeno fuzzy systems with timevarying state delays is studied. The uncertain parameters are supposed to reside in a polytope. Based on the delay-dependent Lyapunov functional method, a new delay-dependent robust H∞ fuzzy controller, which depends on the size of the delays and the derivative of the delays, is presented in term of linear matrix inequalities (LMIs). For all admissible uncertainties and delays, the controller guarantees not only the asymptotic stability of the system but also the prescribed H∞ attenuation level. In addition, the effectiveness of the proposed design method is demonstrated by a numerical example.  相似文献   

13.
This paper develops a robust control methodology for a class of morphing aircraft,which is called innovative control effector(ICE) aircraft.For the ICE morphing aircraft,the distributed arrays of hundreds of shape-change devices are employed to stabilize and maneuver the air vehicle.Because the morphing aircraft have the inherent uncertainty and varying dynamics due to the alteration of their configuration,a desired control performance can not be satisfied with a fixed feedback controller.Therefore,a novel control framework including an adaptive flight control law and an adaptive allocation algorithm is proposed.Firstly,a state feedback adaptive control law is designed to guarantee closed-loop stability and state tracking in the presence of uncertain dynamics caused by the wing shape change due to different flight missions.In the control allocation,many distributed arrays are managed in an optimal way to improve the robustness of the system.The scheme is used to an uncertain morphing aircraft model,and the simulation results demonstrate their performance.  相似文献   

14.
This paper is concerned with the H_∞ control problem for a class of nonlinear stochastic Markov jump systems with time-delay and system state-, control input-and external disturbancedependent noise. Firstly, by solving a set of Hamilton-Jacobi inequalities(HJIs), the exponential mean square H_∞ controller design of delayed nonlinear stochastic Markov systems is presented. Secondly,by using fuzzy T-S model approach, the H_∞ controller can be designed via solving a set of linear matrix inequalities(LMIs) instead of HJIs. Finally, two numerical examples are provided to show the effectiveness of the proposed design methods.  相似文献   

15.
To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay. Based on the linear matrix inequality (LMI) techniques and stability theory of stochastic differential equations, a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller. The resulting closed-loop fuzzy system is robustly reliable stochastically stable, and the corresponding quadratic cost function is guaranteed to be no more than a certain upper bound for all admissible uncertainties, as well as different actuator fault cases. A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.  相似文献   

16.
The Analytic Network Process (ANP) is a multicriteria theory of measurement used to derive relative priority scales of absolute numbers from individual judgments (or from actual measurements normalized to a relative form) that also belong to a fundamental scale of absolute numbers. These judgments represent the relative influence, of one of two elements over the other in a pairwise comparison process on a third element in the system, with respect to an underlying control criterion. Through its supermatrix, whose entries are themselves matrices of column priorities, the ANP synthesizes the outcome of dependence and feedback within and between clusters of elements. The Analytic Hierarchy Process (AHP) with its independence assumptions on upper levels from lower levels and the independence of the elements in a level is a special case of the ANP. The ANP is an essential tool for articulating our understanding of a decision problem. One had to overcome the limitation of linear hierarchic structures and their  相似文献   

17.
1.INTRODUCTIONIn recent years,decentralized control of interconnect-ed systems has become an i mportant and challengingtopic[1~3].However,it is usually difficult to modelthe systemexactly due to the complex real environ-ment.In the past several years,active research hasbeen carried out in controller design based on univer-sal approxi mators,such as fuzzy control and neuralnetwork control[4~6].For a class of SISO nonlinearsystems,adaptive fuzzy control approaches were pro-posed based on …  相似文献   

18.
Based on the idea of the reduction of optimal control systems in singularperturbations of Lions and a priori estimates in [4], we prove the convergence of theoptimal control, state and the cost function between a singular linear elastodynamic systemand a limit system. Our asymptotic analysis is applicable to the optimal control of flexiblerobotic manipulators.  相似文献   

19.
This paper asks a new question: how can we control the collective behavior of self-organized multi-agent systems? We try to answer the question by proposing a new notion called 'Soft Control' which keeps the local rule of the existing agents in the system. We show the feasibility of soft control by a case study. Consider the simple but typical distributed multi-agent model proposed by Vicsek et al. for flocking of birds: each agent moves with the same speed but with different headings which are updated using a local rule based on the average of its own heading and the headings of its neighbors. Most studies of this model are about the self-organized collective behavior, such as synchronization of headings. We want to intervene in the collective behavior (headings) of the group by soft control. A specified method is to add a special agent, called a 'Shill', which can be controlled by us but is treated as an ordinary agent by other agents. We construct a control law for the shill so that it can synchronize the whole group to an objective heading. This control law is proved to be effective analytically and numerieally. Note that soft control is different from the approach of distributed control. It is a natural way to intervene in the distributed systems. It may bring out many interesting issues and challenges on the control of complex systems.  相似文献   

20.
Abstract: A neuromorphic continuous-time state space pole assignment adaptive controller is proposed, which is particularlyappropriate for controlling a large-scale time-variant state-space model due to the parallely distributed nature ofneurocomputing. In our approach, Hopfield neural network is exploited to identify the parameters of a continuous-timestate-space model, and a dedicated recurrent neural network is designed to compute pole placement feedback control law inreal time. Thus the identification and the control computation are incorporated in the closed-loop, adaptive, real-timecontrol system. The merit of this approach is that the neural networks converge to their solutions very quickly andsimultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号