首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
固体仿生纳米孔道组成的反向电渗析系统能够有效且稳定地将海洋中蕴藏的丰富的盐差能转换成电能.该文从实验和数值模拟两个方面,系统地研究了膜厚对盐差能转换成电能的影响.实验发现,纳米流体盐差能发电系统的最大输出功率密度(P_(max))随着膜厚的增大呈先变大后减小的反常欧姆依赖规律.机制研究表明,膜电阻和离子浓差极化效应这两个竞争因素直接影响了P_(max)与膜厚的关系:当膜厚较大时,膜电阻是影响P_(max)的主导因素;当膜厚较小时,离子浓差极化效应则为主导因素.因此,根据纳米流体盐差能-电能转换系统的应用环境,选择合适的膜厚,可以得到最佳的P_(max).该实验结果与模拟数据可为构建更高的P_(max)的盐差发电纳米流体装置提供参考.  相似文献   

2.
探究了固体仿生纳米孔道在磁场作用下的净扩散电流和离子筛分能力.首先通过实验得出净扩散电流随着膜厚的增加而降低,并且验证了实验与模拟具有相同的变化趋势.然后通过数值计算得出净扩散电流会随着磁感应强度的增加而增加.最后,模拟纳米孔道中磁场调控离子输运,以实现从混合溶液中筛分目标离子.该结果可为基于磁场调控的纳米孔道能源利用提供新策略.  相似文献   

3.
温差电器件的传热分析   总被引:1,自引:1,他引:0  
温差电器件是热电转换系统的核心部件。为了提高热电转换系统的效率并优化其输出功率和电压,详细分析了温差电器件的热阻网络,根据热电效应、热力学与电学理论建立了温差电器件的传热模型。利用此模型可以分析温差电器件的结构对其输出功率、电压及效率的影响,并着重分析了热电偶的长度和截面积对温差电器件性能的影响。通过数值分析表明,其功率随着热电偶的长度的减小和截面积的增大而明显增大,而最大热电转换效率逐渐缓慢减小。这可以为温差电器件或各种热电转换系统的优化设计提供参考与指导。  相似文献   

4.
为了解释有关纳米通道内离子输运特性的一系列违反经典流体力学和电迁移理论的实验现象的内在机理,通过分子动力学模拟的方法,研究了受限高浓度Na Cl溶液的离子电流和迁移率等电动力学输运特性.结果显示,跨膜电压和接入电阻是导致单层石墨烯纳米孔的离子电流随孔径呈线性增长的重要原因.受限电解质溶液与体态溶液的本质区别是除了固液界面的边界效应外,跨膜电压造成的局部超大电场将导致电迁移速率随电场强度增加出现非线性增长的Wien效应.同时,离子迁移率随溶液浓度升高而下降.产生这些变化的微观机理除了离子氛屏蔽效应外,还有离子对形成和离子碰撞等离子间微观相互作用.  相似文献   

5.
受生命体系中蛋白质孔道结构与功能的启发,基于固体材料的各种纳米孔道结构和纳流体器件的研究逐渐成为来自物理、化学、纳米、材料、机械工程等多学科研究人员所关注的焦点.因此,固体纳米孔道也成为离子输运和分子传感研究领域不可或缺的一个元素.本文主要从电学输出信号的角度,系统归纳了稳态离子电流和瞬变电流波动2种类型的纳米孔道的传感分析方法.目前,由于固体纳米孔道的分析检测研究仅处于起始阶段,对于未来纳米孔道的研究和应用,不仅需要新的材料和修饰方法,而且需要将纳米孔和非电流的传感技术相结合.而学习自然,构筑受生物启发的仿生智能人工纳米孔道系统,可以为未来的分析检测技术提供更多的应用价值.  相似文献   

6.
通过辐射伏特效应,研究硅基P-N结微型同位素电池的电输出理论模型.根据该模型,用Matlab编写程序模拟尺寸为1 mm×1 mm的硅基微型同位素电池在3.7×107Bq63Ni放射源照射下的电输出,并用该模型仿真硅基微电池的短路电流Isc、开路电压Voc和最大输出功率Pmax与掺杂浓度的关系.仿真结果表明,开路电压随着掺杂浓度的增加而增大,而短路电流则随着掺杂浓度的增大而减小.同时,获得了电池具有最大输出功率密度时的最优化掺杂浓度参数,最大输出功率的P区、N区最优化掺杂浓度值各为1×1020cm-3和1×1015cm-3.  相似文献   

7.
通过分析指出了拱式转换层板厚对结构受力性能的影响.结果表明,上、下弦杆的最大弯距和最大剪力随着上层转换层板厚的增大而增大;随着下层转换层板厚的增大,上弦杆的最大弯距和最大剪力明显增大,而下弦杆的最大弯距和最大剪力不断减小;随着上、下层转换层板厚的增大,斜腹杆的最大轴力不断增加;竖腹杆的最大轴力随着上层转换层板厚的增大而增加,随着下层转换层板厚的增大而减小.  相似文献   

8.
电除尘器离子浓度的分布   总被引:3,自引:0,他引:3  
在静电除尘器中,粒子的荷电模型已经确立,电场和其中的离子浓度影响着粉尘的运动、荷电和沉降.实验利用线板式电除尘模型的一个通道,改变施加在电晕极线的电压值和测量点的位置,利用离子浓度测试仪测量收尘极板处离子的浓度,并对离子浓度的分布进行研究,发现当电压升到25 kV以后,离子浓度上升趋势趋于平缓,离子浓度在1013 m-3的数量级.在相同的电压下,收尘极板上正对电晕线A点的离子浓度都是最大的,离子浓度随距A点距离的增大而减小.  相似文献   

9.
选取Bi2Te3和CoSb3两种温差电材料对温差电单偶建立了数学模型,导出温差电单偶的功率和效率计算公式,分析冷热端陶瓷片表面温度、温差电单偶长度以及表面对流传热系数对温差电单偶性能的影响,并对比两种材料在相同条件下的性能.分析结果表明:提高热面温度、降低冷面温度、缩短温差电单偶的长度和提高热表面对流传热系数均可以提高温差电单偶的最大输出功率,但最大转换效率却不能随之持续增大,缩短温差电单偶的长度甚至会使最大转换效率降低.两种材料的温差电单偶相比较,Bi2Te3材料制成的温差电单偶更适用于对600,K以下的低温热量进行回收,而CoSb3材料制成的温差电单偶则更适用于对内燃机排气等700,K以上的中高温热量进行回收.  相似文献   

10.
基于微纳结构的制冷器   总被引:2,自引:0,他引:2  
采用分子动力学模型对纳米结构的导热系数进行了计算.计算结果表明,在硅纳米线结构中,纳米结构的热传导系数的降低不仅是由于边界散射的增强,同时,声子色散曲线的变化使得声子群速度降低,造成不同波带能量差减小,从而强化了U散射过程,导致热传导系数进一步降低.在理论研究的基础上,采用微加工工艺在1.2μm厚的Ⅲ-Ⅴ族InGaAs/InGaAsP超晶格薄膜上加工出截面积为50μm×50μm热离子制冷器.实验结果表明,在环境温度30℃时,制冷器可获得最大2℃温差.数值模拟结果表明,接触电阻制约了器件性能的提升,如不考虑这个非理想因素,器件的最大制冷温差可达到10℃.  相似文献   

11.
该研究考虑被动调Q过程的动态损耗,即考虑可饱和吸收体的吸收系数随时间的变化,分析了LD端面泵浦被动Q开关Nd:YAG激光器的速率方程组。数值模拟了在不同可饱和吸收体初始透过率,以及不同输出耦合镜透过率的情况下,输出激光的单脉冲能量和脉宽。并与试验结果进行了对比。模拟结果和实验结果相符合。研究结果表明随着初始透过率的增加单脉冲能量逐渐减小,而脉宽逐渐增大。随着输出耦合镜透过率的增加,单脉冲能量先增大后减小,脉宽先减小后增大。  相似文献   

12.
利用静电纺丝法制备了生物可吸收聚-L-乳酸(PLLA)/β-磷酸三钙(β-TCP)复合物纳米纤维膜.采用扫描电子显微镜(SEM)、场发射扫描电子显微镜(FESEM)等手段研究了复合物纳米纤维膜的结构和形态,详细探讨电纺工艺条件对制备PLLA/β-TCP复合物纳米纤维的形态影响.通过拉伸力学测试、噻唑蓝比色法(MTT)对复合物纳米纤维膜的力学性能和体外细胞相容性作了进一步研究.结果表明,PLLA/β-TCP复合物纳米纤维的几何结构与电纺条件有关,随着聚合物溶液浓度增加、溶液流速增大,纤维直径有不同程度的增大;复合物纳米纤维膜的拉伸强度和杨氏模量随β-TCP的含量增加而下降;复合物纳米纤维膜对L-929细胞系无细胞毒性,显示良好的细胞相容性.  相似文献   

13.
为了研究基于塞贝克效应的热电能量采集器的温差发电性能,实现微电子器件的自供电,本文通过实验模拟工业场合热壁的方法研究了某一型号热电模块串联、并联和单模块的输出电压等特性。实验结果表明:三种连接方式下热电模块的开路电压均随冷热端温差增大而增大,开路电压与模块冷热端温差成正比关系。三种连接方式下单个模块、双模块并联、双模块串联分别在负载为8 Ω、4 Ω、17 Ω左右时,负载上可获得最大功率。可见针对不同负载选择适宜的热电模块组合方式可以使得能量采集器具有更高的能量利用率。  相似文献   

14.
纳米粒子介电泳的分子动力学模拟   总被引:1,自引:0,他引:1  
为研究微流体环境下纳米粒子的介电泳现象并分析其介电泳特性,采用非平衡态分子动力学方法对纳米胶体粒子及其周围溶剂粒子进行建模.介电泳模拟之前,通过对系统能量和温度的趋衡过程进行模拟,使纳米胶体所处的微流体系统达到稳定状态,并得出系统能量以及温度变化过程的趋衡图.对纳米胶体模型施加非均匀电场,使胶体电偶极化.变化非均匀电场强度,研究胶体模型失效的一般规律.发现随着非均匀电场强度的增加,小离子有不断脱离大离子表面的趋势,胶体模型失效的临界电场强度参数为Eo=15s/(eó).此外,对不同极性的纳米胶体的介电泳现象进行模拟,发现在正介电泳情况下,胶体的电偶极距不断增大,且电偶极距大的胶体有较大的介电泳速度和位移.  相似文献   

15.
实验研究电解液温度、草酸浓度、草酸-硫酸混酸浓度、电流密度及膜层厚度等因素对阳极氧化铝膜的抗电强度的影响.结果表明,随生长条件不同,阳极氧化铝膜的抗电强度在50~120 V/μm范围内变化.其中,电解液温度对抗电强度影响大,降低电解液温度有利于抗电强度的提高;电流密度对抗电强度的影响存在最佳值特征,低于该值时,氧化终止电压低,随之膜层抗电强度低,高于该值时,氧化电压随电流密度非线性上升,热功耗过大导致实际氧化温度上升,抗电强度降低;草酸电解液制备膜层的抗电强度高,并随草酸浓度上升而提高,微量硫酸添加均会导致抗电强度的下降;抗电强度随膜层厚度增加呈现先上升后下降的特征.1  相似文献   

16.
采用静电纺丝技术制备碳纳米纤维,通过油浴加热法制备碳纳米纤维负载Re-Pt_3Ni复合材料.为了研究该复合材料对电极的膜厚对染料敏化太阳能电池性能的影响,通过球磨以及喷涂法得到不同膜厚的对电极,分别为5、10、15、20μm,所得电池的能量转换效率分别为5.12%、7.67%、8.43%、8.09%.结果表明复合材料对电极膜厚存在一个最佳值,使电池的能量转换效率达到最高,同时,也表明复合材料有潜力成为Pt电极的替代品.  相似文献   

17.
采用分子动力学模拟方法,对氩蒸气在铂金属表面发生的膜状冷凝过程进行了研究.为保证冷凝过程在相对较长时间范围内持续稳定进行,提出了一种改进的气态分子补充方法.通过逐时对系统内局部温度及密度进行统计,获得了不同时刻的参数分布.结果显示:在模拟时间范围内,液膜厚度近似线性增加,壁面附近液相分子受固壁势能作用而呈现出密度振荡的"液体层状化"分布;液膜内产生温度梯度,固液界面处温度跳跃现象明显.考察了气体温度以及壁面润湿性变化产生的影响,结果表明:随着气体温度的升高,温度梯度以及温度跳跃均增大;液相密度略有下降,液体内层状区域的密度振荡范围略有减小,气液界面厚度增加;质量流率以及液膜厚度增长速率也都增大,反映出更大的气固温差加快了冷凝过程的进行,这一点与宏观规律一致.随着润湿性增强,液膜厚度增长加快,液体层状区内的密度振荡范围增加,液膜内温度梯度增大,温度跳跃大幅减小,冷凝过程得到显著强化.显然,近壁面区内的热传导对整个冷凝过程进行的速度具有重要影响.  相似文献   

18.
通过搭建空冷燃料电池实验平台,对5kW空冷型质子交换膜燃料电池(PEMFC)进行不同负载电流下的风扇转速调节,得到PEMFC的输出特性. PEMFC启动初期,低转速使得电堆温度不断上升,受到温度的影响, PEMFC输出功率从升高转为下降.随着风扇转速的进一步增大,电堆温度持续下降,功率开始回升,空气进气量逐渐转为影响电堆输出功率的主要因素.实验结果表明,在不同负载电流下,存在一个转速临界值使得PEMFC达到热平衡,并使得系统输出较高净功率.  相似文献   

19.
采用3,3′,4,4′-二苯酮四酸二酐(简称酮酐)(BTDA)、甲苯二异氰酸酯(TDI)、4,4′-二苯基甲烷二异氰酸酯(MDI)为原料,在较低的温度下,通过"一步法"合成BTDA-TDI/MDI三元共聚聚酰亚胺,利用溶液相转化法成功制备聚酰亚胺(PI)微孔膜,探究了滞空时间和凝固浴浓度对膜结构和性能的影响.结果表明:随着滞空时间的延长,膜皮层厚度增大,皮层致密程度呈现先增大后减小的趋势,水通量呈现逐渐减小趋势,到达最小通量后开始回升,牛血清蛋白(BSA)截留率则呈现逐步增大趋势,到达峰值后开始下降;随着凝固浴浓度的增加,膜皮层厚度增大,膜厚减小,皮层致密程度变化不明显,水通量呈现逐步下降趋势,BSA截留率逐渐上升.  相似文献   

20.
利用ANSYS有限元软件进行数值模拟,分析弯管折角角度、曲率半径、管径、壁厚和循环工作温差对40°~90°供热直埋折角弯管应力的影响规律.根据计算结果绘制不同影响因素与折角弯管最大应力曲线图.结果表明:随着弯管折角角度、曲率半径、管径、壁厚的增加,弯管最大应力值呈递减趋势;随着循环温差的增加,弯管应力最大值逐渐增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号