首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The El Ni?o/Southern Oscillation (ENSO) system during the Pliocene warm period (PWP; 3-5 million years ago) may have existed in a permanent El Ni?o state with a sharply reduced zonal sea surface temperature (SST) gradient in the equatorial Pacific Ocean. This suggests that during the PWP, when global mean temperatures and atmospheric carbon dioxide concentrations were similar to those projected for near-term climate change, ENSO variability--and related global climate teleconnections-could have been radically different from that today. Yet, owing to a lack of observational evidence on seasonal and interannual SST variability from crucial low-latitude sites, this fundamental climate characteristic of the PWP remains controversial. Here we show that permanent El Ni?o conditions did not exist during the PWP. Our spectral analysis of the δ(18)O SST and salinity proxy, extracted from two 35-year, monthly resolved PWP Porites corals in the Philippines, reveals variability that is similar to present ENSO variation. Although our fossil corals cannot be directly compared with modern ENSO records, two lines of evidence suggest that Philippine corals are appropriate ENSO proxies. First, δ(18)O anomalies from a nearby live Porites coral are correlated with modern records of ENSO variability. Second, negative-δ(18)O events in the fossil corals closely resemble the decreases in δ(18)O seen in the live coral during El Ni?o events. Prior research advocating a permanent El Ni?o state may have been limited by the coarse resolution of many SST proxies, whereas our coral-based analysis identifies climate variability at the temporal scale required to resolve ENSO structure firmly.  相似文献   

2.
Turney CS  Kershaw AP  Clemens SC  Branch N  Moss PT  Fifield LK 《Nature》2004,428(6980):306-310
The El Ni?o/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial-interglacial cycle. ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time, but the proposals disagree on whether increased frequency of El Ni?o events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Ni?o events (summer precipitation declines in El Ni?o years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard-Oeschger events--millennial-scale warm events in the North Atlantic climate record--although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (approximately 11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections.  相似文献   

3.
Urban FE  Cole JE  Overpeck JT 《Nature》2000,407(6807):989-993
Today, the El Ni?o/Southern Oscillation (ENSO) system is the primary driver of interannual variability in global climate, but its long-term behaviour is poorly understood. Instrumental observations reveal a shift in 1976 towards warmer and wetter conditions in the tropical Pacific, with widespread climatic and ecological consequences. This shift, unique over the past century, has prompted debate over the influence of increasing atmospheric concentrations of greenhouse gases on ENSO variability. Here we present a 155-year ENSO reconstruction from a central tropical Pacific coral that provides new evidence for long-term changes in the regional mean climate and its variability. A gradual transition in the early twentieth century and the abrupt change in 1976, both towards warmer and wetter conditions, co-occur with changes in variability. In the mid-late nineteenth century, cooler and drier background conditions coincided with prominent decadal variability; in the early twentieth century, shorter-period (approximately 2.9 years) variability intensified. After 1920, variability weakens and becomes focused at interannual timescales; with the shift in 1976, variability with a period of about 4 years becomes prominent. Our results suggest that variability in the tropical Pacific is linked to the region's mean climate, and that changes in both have occurred during periods of natural as well as anthropogenic climate forcing.  相似文献   

4.
Brad Adams J  Mann ME  Ammann CM 《Nature》2003,426(6964):274-278
Past studies have suggested a statistical connection between explosive volcanic eruptions and subsequent El Ni?o climate events. This connection, however, has remained controversial. Here we present support for a response of the El Ni?o/Southern Oscillation (ENSO) phenomenon to forcing from explosive volcanism by using two different palaeoclimate reconstructions of El Ni?o activity and two independent, proxy-based chronologies of explosive volcanic activity from ad 1649 to the present. We demonstrate a significant, multi-year, El Ni?o-like response to explosive tropical volcanic forcing over the past several centuries. The results imply roughly a doubling of the probability of an El Ni?o event occurring in the winter following a volcanic eruption. Our empirical findings shed light on how the tropical Pacific ocean-atmosphere system may respond to exogenous (both natural and anthropogenic) radiative forcing.  相似文献   

5.
Cobb KM  Charles CD  Cheng H  Edwards RL 《Nature》2003,424(6946):271-276
Any assessment of future climate change requires knowledge of the full range of natural variability in the El Ni?o/Southern Oscillation (ENSO) phenomenon. Here we splice together fossil-coral oxygen isotopic records from Palmyra Island in the tropical Pacific Ocean to provide 30-150-year windows of tropical Pacific climate variability within the last 1,100 years. The records indicate mean climate conditions in the central tropical Pacific ranging from relatively cool and dry during the tenth century to increasingly warmer and wetter climate in the twentieth century. But the corals also document a broad range of ENSO behaviour that correlates poorly with these estimates of mean climate. The most intense ENSO activity within the reconstruction occurred during the mid-seventeenth century. Taken together, the coral data imply that the majority of ENSO variability over the last millennium may have arisen from dynamics internal to the ENSO system itself.  相似文献   

6.
The South Pacific convergence zone (SPCZ) is the Southern Hemisphere's most expansive and persistent rain band, extending from the equatorial western Pacific Ocean southeastward towards French Polynesia. Owing to its strong rainfall gradient, a small displacement in the position of the SPCZ causes drastic changes to hydroclimatic conditions and the frequency of extreme weather events--such as droughts, floods and tropical cyclones--experienced by vulnerable island countries in the region. The SPCZ position varies from its climatological mean location with the El Ni?o/Southern Oscillation (ENSO), moving a few degrees northward during moderate El Ni?o events and southward during La Ni?a events. During strong El Ni?o events, however, the SPCZ undergoes an extreme swing--by up to ten degrees of latitude toward the Equator--and collapses to a more zonally oriented structure with commensurately severe weather impacts. Understanding changes in the characteristics of the SPCZ in a changing climate is therefore of broad scientific and socioeconomic interest. Here we present climate modelling evidence for a near doubling in the occurrences of zonal SPCZ events between the periods 1891-1990 and 1991-2090 in response to greenhouse warming, even in the absence of a consensus on how ENSO will change. We estimate the increase in zonal SPCZ events from an aggregation of the climate models in the Coupled Model Intercomparison Project phases 3 and 5 (CMIP3 and CMIP5) multi-model database that are able to simulate such events. The change is caused by a projected enhanced equatorial warming in the Pacific and may lead to more frequent occurrences of extreme events across the Pacific island nations most affected by zonal SPCZ events.  相似文献   

7.
Predictability of El Niño over the past 148 years   总被引:5,自引:0,他引:5  
Chen D  Cane MA  Kaplan A  Zebiak SE  Huang D 《Nature》2004,428(6984):733-736
Forecasts of El Ni?o climate events are routinely provided and distributed, but the limits of El Ni?o predictability are still the subject of debate. Some recent studies suggest that the predictability is largely limited by the effects of high-frequency atmospheric 'noise', whereas others emphasize limitations arising from the growth of initial errors in model simulations. Here we present retrospective forecasts of the interannual climate fluctuations in the tropical Pacific Ocean for the period 1857 to 2003, using a coupled ocean-atmosphere model. The model successfully predicts all prominent El Ni?o events within this period at lead times of up to two years. Our analysis suggests that the evolution of El Ni?o is controlled to a larger degree by self-sustaining internal dynamics than by stochastic forcing. Model-based prediction of El Ni?o therefore depends more on the initial conditions than on unpredictable atmospheric noise. We conclude that throughout the past century, El Ni?o has been more predictable than previously envisaged.  相似文献   

8.
Moy CM  Seltzer GO  Rodbell DT  Anderson DM 《Nature》2002,420(6912):162-165
The variability of El Ni?o/Southern Oscillation (ENSO) during the Holocene epoch, in particular on millennial timescales, is poorly understood. Palaeoclimate studies have documented ENSO variability for selected intervals in the Holocene, but most records are either too short or insufficiently resolved to investigate variability on millennial scales. Here we present a record of sedimentation in Laguna Pallcacocha, southern Ecuador, which is strongly influenced by ENSO variability, and covers the past 12,000 years continuously. We find that changes on a timescale of 2-8 years, which we attribute to warm ENSO events, become more frequent over the Holocene until about 1,200 years ago, and then decline towards the present. Periods of relatively high and low ENSO activity, alternating at a timescale of about 2,000 years, are superimposed on this long-term trend. We attribute the long-term trend to orbitally induced changes in insolation, and suggest internal ENSO dynamics as a possible cause of the millennial variability. However, the millennial oscillation will need to be confirmed in other ENSO proxy records.  相似文献   

9.
Chang P  Fang Y  Saravanan R  Ji L  Seidel H 《Nature》2006,443(7109):324-328
El Ni?o, the most prominent climate fluctuation at seasonal-to-interannual timescales, has long been known to have a remote impact on climate variability in the tropical Atlantic Ocean, but a robust influence is found only in the northern tropical Atlantic region. Fluctuations in the equatorial Atlantic are dominated by the Atlantic Ni?o, a phenomenon analogous to El Ni?o, characterized by irregular episodes of anomalous warming during the boreal summer. The Atlantic Ni?o strongly affects seasonal climate prediction in African countries bordering the Gulf of Guinea. The relationship between El Ni?o and the Atlantic Ni?o is ambiguous and inconsistent. Here we combine observational and modelling analysis to show that the fragile relationship is a result of destructive interference between atmospheric and oceanic processes in response to El Ni?o. The net effect of El Ni?o on the Atlantic Ni?o depends not only on the atmospheric response that propagates the El Ni?o signal to the tropical Atlantic, but also on a dynamic ocean-atmosphere interaction in the equatorial Atlantic that works against the atmospheric response. These results emphasize the importance of having an improved ocean-observing system in the tropical Atlantic, because our ability to predict the Atlantic Ni?o will depend not only on our knowledge of conditions in the tropical Pacific, but also on an accurate estimate of the state of the upper ocean in the equatorial Atlantic.  相似文献   

10.
Abram NJ  Gagan MK  Liu Z  Hantoro WS  McCulloch MT  Suwargadi BW 《Nature》2007,445(7125):299-302
The Indian Ocean Dipole (IOD)--an oscillatory mode of coupled ocean-atmosphere variability--causes climatic extremes and socio-economic hardship throughout the tropical Indian Ocean region. There is much debate about how the IOD interacts with the El Ni?o/Southern Oscillation (ENSO) and the Asian monsoon, and recent changes in the historic ENSO-monsoon relationship raise the possibility that the properties of the IOD may also be evolving. Improving our understanding of IOD events and their climatic impacts thus requires the development of records defining IOD activity in different climatic settings, including prehistoric times when ENSO and the Asian monsoon behaved differently from the present day. Here we use coral geochemical records from the equatorial eastern Indian Ocean to reconstruct surface-ocean cooling and drought during individual IOD events over the past approximately 6,500 years. We find that IOD events during the middle Holocene were characterized by a longer duration of strong surface ocean cooling, together with droughts that peaked later than those expected by El Ni?o forcing alone. Climate model simulations suggest that this enhanced cooling and drying was the result of strong cross-equatorial winds driven by the strengthened Asian monsoon of the middle Holocene. These IOD-monsoon connections imply that the socioeconomic impacts of projected future changes in Asian monsoon strength may extend throughout Australasia.  相似文献   

11.
Although the El Ni?o/Southern Oscillation phenomenon is the most prominent mode of climate variability and affects weather and climate in large parts of the world, its effects on Europe and the high-latitude stratosphere are controversial. Using historical observations and reconstruction techniques, we analyse the anomalous state of the troposphere and stratosphere in the Northern Hemisphere from 1940 to 1942 that occurred during a strong and long-lasting El Ni?o event. Exceptionally low surface temperatures in Europe and the north Pacific Ocean coincided with high temperatures in Alaska. In the lower stratosphere, our reconstructions show high temperatures over northern Eurasia and the north Pacific Ocean, and a weak polar vortex. In addition, there is observational evidence for frequent stratospheric warmings and high column ozone at Arctic and mid-latitude sites. We compare our historical data for the period 1940-42 with more recent data and a 650-year climate model simulation. We conclude that the observed anomalies constitute a recurring extreme state of the global troposphere-stratosphere system in northern winter that is related to strong El Ni?o events.  相似文献   

12.
Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98   总被引:63,自引:0,他引:63  
Webster PJ  Moore AM  Loschnigg JP  Leben RR 《Nature》1999,401(6751):356-360
Climate variability in the Indian Ocean region seems to be, in some aspects, independent of forcing by external phenomena such as the El Ni?o/Southern Oscillation. But the extent to which, and how, internal coupled ocean-atmosphere dynamics determine the state of the Indian Ocean system have not been resolved. Here we present a detailed analysis of the strong seasonal anomalies in sea surface temperatures, sea surface heights, precipitation and winds that occurred in the Indian Ocean region in 1997-98, and compare the results with the record of Indian Ocean climate variability over the past 40 years. We conclude that the 1997-98 anomalies--in spite of the coincidence with the strong El Ni?o/Southern Oscillation event--may primarily be an expression of internal dynamics, rather than a direct response to external influences. We propose a mechanism of ocean-atmosphere interaction governing the 1997-98 event that may represent a characteristic internal mode of the Indian Ocean climate system. In the Pacific Ocean, the identification of such a mode has led to successful predictions of El Ni?o; if the proposed Indian Ocean internal mode proves to be robust, there may be a similar potential for predictability of climate in the Indian Ocean region.  相似文献   

13.
Complex causes of amphibian population declines   总被引:22,自引:0,他引:22  
Kiesecker JM  Blaustein AR  Belden LK 《Nature》2001,410(6829):681-684
Amphibian populations have suffered widespread declines and extinctions in recent decades. Although climatic changes, increased exposure to ultraviolet-B (UV-B) radiation and increased prevalence of disease have all been implicated at particular localities, the importance of global environmental change remains unclear. Here we report that pathogen outbreaks in amphibian populations in the western USA are linked to climate-induced changes in UV-B exposure. Using long-term observational data and a field experiment, we examine patterns among interannual variability in precipitation, UV-B exposure and infection by a pathogenic oomycete, Saprolegnia ferax. Our findings indicate that climate-induced reductions in water depth at oviposition sites have caused high mortality of embryos by increasing their exposure to UV-B radiation and, consequently, their vulnerability to infection. Precipitation, and thus water depth/UV-B exposure, is strongly linked to El Ni?o/Southern Oscillation cycles, underscoring the role of large-scale climatic patterns involving the tropical Pacific. Elevated sea-surface temperatures in this region since the mid-1970s, which have affected the climate over much of the world, could be the precursor for pathogen-mediated amphibian declines in many regions.  相似文献   

14.
基于中国1980—2018年0.5°×0.5°逐日降水数据、紧急灾害数据库数据(EM-DAT),分析了厄尔尼诺-南方涛动(ENSO)和北大西洋涛动(NAO)对中国极端降水频次及强度、洪水发生率及损失的可能影响.结论如下:1)当冬季厄尔尼诺发生后,次年我国东部沿海及黄河、长江下游地区秋季极端降水强度增加26%;当冬季拉尼娜发生后,次年我国东部地区春、夏季极端降水强度分别增加8.8%、5.1%.2)当NAO为正位相时,我国大部分地区春、夏、秋季极端降水频次较高,华东地区夏季极端降水强度增加8.5%.3)与正常年份相比,冬季厄尔尼诺或拉尼娜发生后,次年我国春季洪水损失偏多14.5%,秋季洪水发生率偏低30%;NAO为正位相时,我国春季洪水损失偏少20%,秋季洪水发生率偏高14%.4)当拉尼娜发生后及NAO正位相、负位相时,我国长江、黄河和珠江流域极端降水与洪涝灾害的变化具有一致性.   相似文献   

15.
黄、东海沿岸海表温度变化与厄尔尼诺的关系   总被引:1,自引:0,他引:1  
利用黄、东海沿岸8个长期水文观测站多年海表温度资料,分析黄、东海沿岸海表温度的季节和年际变化特征,重点分析在1982—1983年和1997—1998年两次厄尔尼诺年期间的异常变化,以及ENSO影响黄、东海沿岸海表温度的可能机制。结果表明,在厄尔尼诺发生年,夏季风较弱,鄂霍次克海高压加强,西太平洋副高位置偏南,强度偏强,江淮流域及长江中下游降水偏多,黄、东海沿岸海表温度偏低。黄、东海沿岸海表温度受到ENSO和PDO(太平洋年代际振荡)的影响和调制,在厄尔尼诺发生的前冬半年及当年,黄、东海沿岸海表温度偏低;在厄尔尼诺发生次年,黄、东海沿岸海表温度偏高。厄尔尼诺对黄、东海沿岸海表温度变化的影响通过海洋和大气2个通道,1982—1983年海表温度异常以负异常为主,1997—1998年海表温度异常以正异常为主;ENSO期间,北赤道流减弱,黑潮流量减少,海表温度降低。海表温度受局地气温影响显著,如果ENSO期间东亚气温升高,则黄、东海沿岸海表温度偏高。  相似文献   

16.
More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land?a key diagnostic criterion of the effects of climate change and variability?remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1?±?1.0?millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Ni?o event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.  相似文献   

17.
Visser K  Thunell R  Stott L 《Nature》2003,421(6919):152-155
Ocean-atmosphere interactions in the tropical Pacific region have a strong influence on global heat and water vapour transport and thus constitute an important component of the climate system. Changes in sea surface temperatures and convection in the tropical Indo-Pacific region are thought to be responsible for the interannual to decadal climate variability observed in extra-tropical regions, but the role of the tropics in climate changes on millennial and orbital timescales is less clear. Here we analyse oxygen isotopes and Mg/Ca ratios of foraminiferal shells from the Makassar strait in the heart of the Indo-Pacific warm pool, to obtain synchronous estimates of sea surface temperatures and ice volume. We find that sea surface temperatures increased by 3.5-4.0 degrees C during the last two glacial-interglacial transitions, synchronous with the global increase in atmospheric CO2 and Antarctic warming, but the temperature increase occurred 2,000-3,000 years before the Northern Hemisphere ice sheets melted. Our observations suggest that the tropical Pacific region plays an important role in driving glacial-interglacial cycles, possibly through a system similar to how El Ni?o/Southern Oscillation regulates the poleward flux of heat and water vapour.  相似文献   

18.
A variational iteration method for studying the ENSO mechanism   总被引:5,自引:0,他引:5  
A coupled system of the El Ni(n)o/La Ni(n)o-Southern Oscillation (ENSO) mechanism is studied. Using the variational iteration theory, the approximations of the solution of an ENSO model is obtained.  相似文献   

19.
Shevenell AE  Ingalls AE  Domack EW  Kelly C 《Nature》2011,470(7333):250-254
The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica highlight the impact of recent atmospheric and oceanic warming on the cryosphere. Observations and models suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000 years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX(86) sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations. On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability. Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions and El Ni?o/Southern Oscillation variability indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling.  相似文献   

20.
With the warm/cold phases of the El Ni o and Southern Oscillation (ENSO) as a background, the impacts of monthly variation in the Arctic Oscillation (AO) on the winter climate anomalies in East Asia are studied with the NCEP/DOE Reanalysis 2 data and the Chinese station data regarding temperature and rainfall. The combined effects of ENSO and the AO indicate that the winter climate anomalies are mainly influenced by the AO in northern China and the ENSO in southern China, when an El Ni o couples with a negative AO month or a La Ni a couples with a positive AO month. These climate anomalies in China are consistent with the mechanisms proposed in previous studies. However, most of China presents a different pattern of climate anomalies if an El Ni o couples with a positive AO month or a La Ni a couples with a negative AO month, with the exception of the temperature anomalies in northern China, which are still affected dominantly by the AO. Further analysis suggests that the causes are attributed to the differences in both the stratosphere-troposphere interaction and the extratropics-tropics interaction. In the former cases, zonal symmetric circulation prevails in the winter and the extratropics-tropics interaction is weakened. Thus, the influences of the ENSO and the AO on the East Asian climate mainly present linear combination effects. On the contrary, an annular mode of atmospheric circulation is not favored in the latter cases and the extratropics-tropics interaction is strong. Hence, the combined effects of the ENSO and the AO on the winter climate in East Asia present nonlinear characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号