首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对上海市颗粒物的污染和防治问题,利用2014年4月14日—2015年3月24日10个国控监测点的PM2.5和PM10小时数据及对应的气象因素资料,以PM2.5质量浓度占PM10质量浓度的比例为研究对象,使用聚类分析和相关性分析PM_(2.5)/PM_(10)的时空分布特征.结果表明:P2.5和PM10的季节高低为冬春秋夏,PM_(2.5)/PM_(10)的季节分布在不同区域存在差异性.PM_(2.5)/PM_(10)的日变化呈现双峰型趋势,峰值出现在05:00和14:00左右,上午PM_(2.5)/PM_(10)高于下午.颗粒物质量浓度及PM_(2.5)/PM_(10)具有明显的"周末效应",这与车辆通行政策与人类作息时间变动相关.在空间分布上,颗粒物质量浓度及PM_(2.5)/PM_(10)均表现为背景站浦西站浦东站.  相似文献   

2.
以大连市为研究区域,基于2016—2017年大连市9个国控自动空气质量监测站的PM_(2.5)质量浓度逐小时监测数据,整理、筛选得到52 029个有效样本数据,探讨PM_(2.5)质量浓度时空分布特征,分析其年、季节、月份、日均值变化规律,进行PM_(2.5)质量浓度与SO2和CO的相关性分析.结果表明:2017年较2016年PM_(2.5)质量浓度有所下降,1a中浓度由高到低的季节依次是冬、春、秋、夏.PM_(2.5)质量浓度月均值呈V型分布,2016年和2017年最大值分别出现在12月和3月,最小值均出现在8月.日变化呈多峰型分布,峰值出现在早高峰8:00前后及夜间22:00.各站点月均值变化趋势大体一致,均呈V型分布.位于工业区的站点PM_(2.5)质量浓度都相对高于居民区,位于海边和郊区的居民区PM_(2.5)质量浓度相对低于市中心的居民区.PM_(2.5)质量浓度与SO_2和CO均呈现极显著相关性,Pearson相关系数分别是0.584和0.730,说明工厂废气排放及机动车尾气排放对空气质量产生了不容忽视的影响.  相似文献   

3.
利用电脑微激光粉尘仪对西安市南二环2013年春季5月70 m高度范围内的可吸入颗粒物(PM_(10))质量浓度进行了4个昼夜的监测。观测发现,西安南二环PM_(10)质量浓度昼夜变化可分为5个阶段:第1阶段在8:00—10:00,PM_(10)平均质量浓度范围0.056 mg/m~3;第2阶段在12:00—14:00,PM_(10)平均质量浓度为0.075 mg/m~3;第3阶段在16:00—18:00,PM_(10)平均质量浓度为0.058 mg/m~3;第4阶段在20:00—22:00,PM_(10)平均质量浓度为0.070 mg/m~3;第5阶段在0:00—6:00,PM_(10)平均质量浓度为0.038 mg/m~3。高分辨率地垂向观测结果表明,西安5月PM_(10)质量浓度垂向变化可分为3种类型:第1种类型,随着高度的增加PM_(10)质量浓度增加幅度居中,平均递增率为0.048μg/m;第2种类型,随着高度的增加PM_(10)质量浓度幅度增加最大,递增率为0.065μg/m,且波动变化明显;第3种类型,随着高度的增加PM_(10)质量浓度增加幅度最小,递增率为0.013μg/m。西安南二环5月PM_(10)质量浓度在1 m高度处最低,平均为0.048 mg/m~3;4~46 m高度范围内质量浓度较低,平均为0.051 mg/m~3;在49~67m高度范围内质量浓度较高,平均为0.052 mg/m~3;在70m处最高,平均为0.056 mg/m~3。观测期间PM_(10)质量浓度与4 m处的温度之间为显著正相关(y=240.73x+12.305),与4、7、10 m高度处的湿度为显著负相关(y=-606.42x+82.08)。  相似文献   

4.
为获取高空间分辨率的污染物浓度数据,搭建了基于无人机技术的大气污染物立体监测平台,并成功获取临安市2014年11月一次重污染事件1 km以下高度的细颗粒物(PM_(2.5))浓度及同步气象场的三维分布数据。结果表明:大气湍流对PM_(2.5)浓度时空变化具有重要影响。清晨及上午大气垂直湍流活动较弱,大气稳定度较高,逆温等温层多重大气结构不利于PM_(2.5)垂直扩散。中午大气湍流活跃度最高,PM_(2.5)混合充分,垂直浓度梯度较小。下午PM_(2.5)在边界层内水平输送显著,并逐步向下沉降,说明此次重污染事件主要受外地污染源输送影响。  相似文献   

5.
利用2014年12月至2015年5月南京市PM_(2.5)和PM_(10)的质量浓度以及天气观测数据,研究南京市颗粒物浓度空间、时间分布特征及其与相关气象因子的关系。研究表明PM_(2.5)和PM_(10)同季节内高度线性相关,时间分布具有明显的季节性差异;PM_(2.5)与风速呈负相关关系,与降雨清除量呈正相关关系;相对湿度达到75%左右时污染最严重。研究首次将其他污染气体和相关气象因子结合起来,用逐步回归法建立PM_(2.5)预测模型,能较好地拟合冬春两季PM_(2.5)变化趋势,较准确地反映南京市PM_(2.5)的污染特征,具有一定的理论和实用价值。  相似文献   

6.
目的研究植物空间布局和植物尺度对PM_(2.5)扩散的影响规律,增加对小空间空气质量的关注度,为筛选适合于场地条件的植物配置方案提供思路.方法以沈阳建筑大学校园的庭院为例,利用FLUENT模拟软件对校园庭院内植物的不同空间布局形式、不同尺度、不同垂直高度进行数值模拟分析.结果在校园东、西两侧教学楼一层架空的庭院内,截面高度是1.5 m时,植物选用条带状布局的庭院内部PM_(2.5)的质量浓度低于选用三角状布局的庭院;3种典型植物尺度的代表植物降低PM_(2.5)质量浓度的次序为新疆杨、山楂、白蜡;随着垂直高度的增加,PM_(2.5)质量浓度逐步降低.结论条带状的植物布局更有利于PM_(2.5)扩散;冠幅与树高的比值越小对PM_(2.5)扩散影响越大.  相似文献   

7.
为研究吉安市城市PM_(10)及PM_(2.5)污染状况及时空分布特征,对吉安市2015年1月至2017年8月4个城市环境国家环境空气监测点的PM_(10)及PM_(2.5)监测数据进行统计分析。结果表明:吉安市城市空气质量表现出冬季PM_(10)浓度明显高于春、夏、秋季,PM_(2.5)/PM_(10)比值为0.632~0.851,PM_(10)及PM_(2.5)均呈现出W型变化规律,6:00达到最低值,11:00-12:00达到最高值;12:00-17:00浓度下降,17:00-23:00浓度再次回升,至23:00再次达到最高值。  相似文献   

8.
不同污染程度下室内外小时PM2.5浓度变化特征对比   总被引:1,自引:1,他引:0  
依据实测北京市夏季室外和开、关窗室内的PM_(2.5)浓度等数据,利用统计分析,探讨了不同污染程度下室内外小时PM_(2.5)浓度的变化特征。结果表明:室外PM2.5污染程度为轻度时,其浓度达到最大值后3 h,开窗室内PM_(2.5)也达到一天中的最大值。室外PM_(2.5)污染程度为良或优时,二者小时PM_(2.5)浓度的变化特征较同步。同时,关窗室内的小时PM_(2.5)浓度会出现大于室外的现象。室外PM_(2.5)的污染程度不论是轻度还是优或良,早晨7:00~9:00之间因交通早高峰的影响,室外和开窗室内细颗粒物浓度会出现峰值。  相似文献   

9.
以上海市高架路为对象,通过移动设备开展数据采集,建立广义加性模型,对高架路细颗粒物(PM_(2.5))浓度的垂直分布及其与微观尺度下的交通、气象、位置等因素之间的关系进行了系统研究,并将原始影响因素的主成分分析结果作为输入变量,提出基于主成分分析法(PCA)的高架路交通污染物浓度垂直变化的神经网络预测模型(PCA-BPNN).结果表明:高度、相对湿度和交通流量对PM_(2.5)浓度垂直变化有着显著影响;PCA-BPNN模型能够较好地处理污染物扩散的非线性问题,消除变量间多重共线性,有效弥补污染物垂直扩散模型在道路微观尺度上预测的不足.  相似文献   

10.
为确定石家庄市采暖期易引发大气污染的气象条件,通过对石家庄市2016—2018年采暖期的空气质量逐日监测数据,以及同期气象观测资料进行研究,分析了石家庄市采暖期的空气质量变化特征,探讨了影响环境数据变化的主要气象要素,筛选并确定了PM_(10)、PM_(2.5)、AQI的污染气象指标。结果表明:石家庄市采暖期内所有天数均为非一级天,其中污染日较多,占69.58%,以PM_(2.5)为首要污染物的天数最多,其次是PM_(10);PM_(10)、PM_(2.5)、SO_2、NO_2、CO浓度与气温、变压、风速和混合层高度负相关,与相对湿度正相关(SO_2除外),O_3与气象要素的相关性和上述五种污染物相反;气象要素对大气环境影响的排序为:相对湿度风速混合层高度水汽压变压气温;确定的三种污染气象指标准确率分别是70.37%、70.37%、72.97%。  相似文献   

11.
利用2017年西安市气象数据和主要大气污染物质量浓度的监测资料,综合分析西安市2017年度气候变化、大气污染状况以及污染物质量浓度演变特征.结果表明:西安市年平均风速为2.43 m/s,平均气温为19.00℃,总降水量为649 mm,冬春季PM_(2.5)、PM10质量浓度值普遍高于夏秋季.利用SPSS对污染物与气象因素进行相关性分析,得出颗粒物、气态污染物CO、SO2质量浓度变化与平均气温、降水量、风速呈负相关,而O3与平均气温、降水量、风速呈正相关.此外,通过拉格朗日混合粒子轨迹模型模拟了西安市48 h的气流后向轨迹,并将PM_(2.5)的质量浓度数据与气团轨迹相结合,利用潜在源贡献函数模型(PSCF)和浓度加权轨迹方法 (CWT),分析西安市PM_(2.5)质量浓度影响及潜在源区分布特征,其结果表明超过50%的气流后向轨迹来自西北方向,西安市PM_(2.5)的主要潜在来源位于陕南各城市以及陕南周边省份交界处.  相似文献   

12.
为探究太原市冬季PM_(2.5)成因,利用位于太原市大气环境综合观测研究站的单颗粒气溶胶质谱仪(SPAMS),结合气象数据,对2019年1月1日-1月31日期间的PM_(2.5)化学组成进行了分析,定量评估研究期间PM_(2.5)的源贡献率。结果表明:研究期间太原市PM_(2.5)日均浓度达到110μg/m~3,PM_(2.5)的颗粒类型主要由有机碳颗粒、混合碳颗粒和元素碳颗粒组成,其中,有机碳颗粒占比(34.7%)最高;PM_(2.5)污染的主要贡献源为燃煤、机动车尾气、工业工艺,占比分别为27.8%、19.7%和17.8%,特别是在PM_(2.5)质量浓度较高时段,燃煤和机动车尾气排放对污染的贡献较大,因此太原市冬季PM_(2.5)污染控制应以燃煤、机动车尾气为主。  相似文献   

13.
根据上海2010年1月—2011年12月17个环境监测点的PM_(10)监测数据和同期地面气象资料,分析了上海PM_(10)质量浓度的季节变化和空间分布.结果表明:上海各监测点间PM_(10)平均质量浓度的差异并不显著,说明区域传输对上海的大气污染有明显影响;风向、风速对上海PM_(10)质量浓度有显著影响,静风及W~S风向时PM_(10)质量浓度较高,东风及东南风时PM_(10)质量浓度较低.分析各监测点PM_(10)质量浓度与全市平均质量浓度的差别时发现,不同季节、不同风向下上海PM_(10)质量浓度的空间分布变化有较明显的规律,污染物在不同功能区之间的相互输送是导致不同风向时PM_(10)质量浓度空间分布差异的重要原因.气压对上海PM_(10)质量浓度的影响明显,低气压时的PM_(10)质量浓度明显较低,但大气压和PM_(10)质量浓度之间不存在线性关系.  相似文献   

14.
运用主成分分析和聚类分析法,对2016—2017年武汉市环境空气10个国控点10个市控点的6个空气质量指标数据进行分析,揭示武汉市环境空气质量时空分布差异性,辨识主要污染因子,解析污染成因.结果表明:2016—2017年,武汉市空气质量有变好的趋势,主要是因为PM_(2.5)和PM_(10)同期月均浓度下降; SO_2、NO_2、PM_(10)、PM_(2.5)浓度排序依次为:冬春秋夏; CO浓度排序依次为:冬秋春夏; O_3浓度排序依次为:夏秋春冬;武汉市监测点位空气质量从好到坏的顺序为:远郊区中心城区工业园(区)或经济开发区;春季的主要污染物因子为NO_2、CO、O_3、PM_(10),夏季的主要污染物因子为NO_2、SO_2、PM_(2.5),秋季的主要污染物因子为NO_2、PM_(2.5)、CO、O_3、PM_(10),冬季的主要污染物因子为NO_2、CO、O_3、PM_(2.5)、PM_(10);近两年,机动车尾气、工业废气排放以及建筑扬尘构成武汉市空气污染的主要来源,秸秆燃烧对空气质量的影响逐渐减小.  相似文献   

15.
以2014—2017年信阳城区逐日气象要素(最高气温、最低气温、均温和降水量)和环境空气自动监测系统逐日数据(SO_2,NO_2,PM_(10),PM_(2.5),CO,O_3污染物浓度和AQI)为研究对象,采用统计分析和Pearson相关系数法,分析气温和降水量与主要污染物之间关系.结果表明:(1)2014—2017年信阳城区空气质量以优良为主,重度、严重污染的日数较少.(2)日气温(最低、平均和最高)和日降水量与主要污染物SO_2,NO_2,PM_(10),PM_(2.5),CO浓度和AQI呈显著的负相关,与O_3呈显著的正相关,说明气温愈高、降水量愈多,空气质量愈好,即夏季空气质量优于冬季.通过统计2014—2017年逐日空气质量,四季空气质量从夏季、秋季、春季和冬季依次由好转差.(3)相较于非雨日,雨日主要污染物浓度明显降低;降水过程中或者降水之后,大气主要污染物浓度显著下降,共同说明降水量对主要污染物具有显著淋洗作用,尤其是颗粒物PM_(10)和PM_(2.5).  相似文献   

16.
利用2018年1月、4月、7月、10月郑州市城区8个监测站点的PM_(2.5)和PM_(10)浓度数据与气象数据,对郑州市城区PM_(2.5)和PM_(10)的时相变化特征及气象要素对其产生的影响进行研究.结果表明:郑州市城区在1月份的PM_(2.5)浓度最高(118.1μg·m~(-3)),污染严重,4月份PM_(10)浓度最高(169.4μg·m~(-3)).通过分析PM_(2.5)和PM_(10)的比值(PM_(2.5)/PM_(10))发现, PM_(2.5)是郑州市城区主要的大气污染物.PM_(2.5)和PM_(10)与气象要素之间的相关分析表明,PM_(2.5)和PM_(10)与气温和露点温度均呈显著负相关(P0.01),PM_(10)与降水呈显著负相关(P0.05),PM_(2.5)与气温之间的相关性(r=-0.441,P0.01)高于PM_(10)和气温的相关性(r=-0.311,P0.01).另外,当风速在2~3 m·s~(-1)时,PM_(10)最低;而风速大于4 m·s~(-1)时,颗粒物浓度增加明显,且对于PM_(10)的增加作用更显著.露点温度与颗粒物浓度之间也存在一定关系,当露点温度大于0℃时,颗粒物浓度会随露点温度的增加而降低.2018年郑州市PM_(2.5)与PM_(10)昼夜变化呈双峰型特征;风速与温度的双重作用导致PM_(2.5)浓度先于PM_(10)达到最高值,而空气湿度和露点温度则是造成04:00时颗粒物较低的主要原因.另外,通过多元回归分析发现,各月份昼夜时段颗粒物浓度主要受温度和相对湿度影响;在各时段中,温度与颗粒物浓度关系最为密切,风速次之,湿度最弱,各气象要素对PM_(2.5)浓度的影响较PM_(10)浓度更大.  相似文献   

17.
火电厂排放源对张家港市冬季空气质量的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解张家港市火电厂排放源对空气质量的影响程度,利用WRF-Chem空气质量模式分别模拟了采用2013年火电厂排放源和2016年预测情景排放源的张家港市冬季各污染物的浓度,分析了现状以及预测排放情景下火电厂对污染物浓度的贡献。结果表明:2013年张家港市火电厂排放源对冬季SO_2,NO_x,PM_(2.5),PM_(10)的小时浓度贡献为60%,50%,14%,20%,火电厂排放源的水平影响范围为5~10km,垂直高度可延伸至2km,受烟流抬升高度的影响,电厂源对100~200m高度污染物浓度的贡献率最大,数值可以达到地面浓度贡献率的1.5倍;2016年采取减排措施后的预测情景表明,各污染物浓度明显减小,火电厂排放源对SO_2,NO_x,PM_(2.5),PM_(10)的小时浓度贡献最大值分别降低到25%,25%,5%,8%,而在垂直高度上,各污染物浓度下降比例最高为18.0%,15.5%,2.1%,3.8%。  相似文献   

18.
依据AOD与PM_(2.5)质量浓度的关系,利用TERRA卫星的MODIS AOD资料、中国区域气溶胶特性综合联网观测与研究计划和中国地区太阳分光观测网的地基数据,研究了四川盆地MODIS AOD精度及2017年研究区域17个市县级站点PM_(2.5)质量浓度的反演问题.结果表明,重庆、盐亭、贡嘎山站点地基观测AOD与MODIS AOD的线性相关系数分别为0.64、0.86、0.87,满足美国国家航空航天局精度要求,且与PM_(2.5)质量浓度呈较高的线性相关,由此构建了四川盆地订正后的AOD与PM_(2.5)质量浓度的拟合方程,反演了2017年四川盆地分辨率达到县级城市的PM_(2.5)质量浓度空间分布,年均质量浓度为38.7μg/m3,呈现盆地中部高、四周低的空间分布格局,与仅用地市级分辨率的实际PM_(2.5)质量浓度监测数据研究得到的四川盆地2017年平均PM_(2.5)质量浓度50.8μg/m3相比,发现仅用地市级站点的实际PM_(2.5)质量浓度监测数据反映四川盆地区域污染状况会造成明显高估现象.  相似文献   

19.
利用2016年9月至2017年2月黔江区PM_(2.5)和PM_(10)质量浓度及相关气象数据,研究了黔江区大气颗粒物与相关气象条件的关系及颗粒物气团输送轨迹。结果表明,黔江区PM_(2.5)、PM_(10)在同一季节内高度线性相关,二者质量浓度日小时值变化存在季节性差异,呈"双峰双谷"型; PM_(2.5)与温度、风速和降雨量均呈显著负相关,当气温低于15℃,风速﹤0. 5 m/s时,严重影响PM_(2.5)扩散,但降雨量增大,可迅速清除大气中的PM_(2.5);对2016年12月黔江区会议中心和旅游学院的后向轨迹聚类分析发现,黔江区两大气自动监测站点颗粒污染物气团主要来自于城市间输送(重庆主城区及湘西土家族苗族自治州),少部分来自长距离输送(西部的青藏高原地区);本研究建立的PM_(2.5)质量浓度预测模型能较好的预测黔江区PM_(2.5)质量浓度的变化趋势,这对于预测大气颗粒物污染事件的发生具有重要的实用价值。  相似文献   

20.
利用成都市2014-2016年逐时空气污染物质量浓度资料和同期逐时降水资料,分析了成都市空气污染物质量浓度变化特征及降水对其影响.结果表明,成都地区2014-2016年大气颗粒物(PM_(10)和PM_(2.5))质量浓度逐年减少,气态污染物(SO_2、NO_2和CO)质量浓度呈波动式降低; 5种污染物质量浓度有明显的年内变化,重污染期均出现在冬季, 1月污染物质量浓度最高, PM_(10)变化幅度最大,最高达192.9μg/m3; 5种污染物质量浓度均存在明显日变化特征,最大值出现时段为09:00-11:00,其中PM_(2.5)、PM_(10)、NO_2和CO质量浓度日变化为双峰型, SO_2为单峰型.降水对污染物的清除效率总体上随降水量的增加而增大:暴雨中雨大雨小雨,对中雨清除率高于大雨清除率的原因进行了初步分析.连续性降水对污染物的清除率极大值出现在第2天,之后清除效率逐渐降低;单位时间降水清除效率中,阵性降水明显大于连续性降水.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号