首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
CO在Pt/Eu 3+/C电极上的电氧化   总被引:2,自引:0,他引:2  
CO在Pt/Eu^3 /C电极上的氧化在温度较低时,电极表面对CO的吸附都明显减弱,吸附量减少,在酸性溶液和中性溶液中CO的起始氧化电位比在Pt/C电极上分别负移130mV和170mV,温度高有利于CO在电极表面的氧化,60℃时CO在Pt/Eu^3 /C电极表面的氧化峰电位在酸性和中性溶液中分别是负移140mV和130mV,Pt/Eu^3 /C电极无论在酸性溶液还是在中性溶液中对CO的氧化都有电催化作用。  相似文献   

2.
用浸渍法和化学沉积法来制备Pt-MoO3/C催化剂,用线性扫描法(LSV)研究了甲醇及CO在Pt-MoO3/C和Pt/C电极上的电化学氧化.结果发现无论在酸性还是在中性溶液中,催化剂中MoO3的加入对甲醇和CO的氧化都具有更好的电催化活性.其主要原因是Mo的存在能够增加电极表面的含氧物种,有利于甲醇的氧化,同时减弱了CO在Pt上的吸附,促进了COad的氧化,减少了CO对催化剂的毒化作用.  相似文献   

3.
用循环伏安法研究了CO在Pt-TiO2/C、Pt-TiO2/Ho3+/C电极上的氧化,发现吸附稀土Ho3+后,在0.5 mol@L-1H2SO4溶液中,对CO的吸附明显减弱,但表现出的对CO的催化作用较小;在0.2 mol@L-1Na2SO4中性溶液中,不仅电极表面对CO的吸附明显减弱,吸附量减少,且CO的起始氧化电位和氧化峰电位分别负移150mV和440mV.Pt-TiO2/Ho3+/C电极在中性溶液中对CO的氧化有明显的电催化作用.  相似文献   

4.
选用不同方法制备PtRu/C催化剂,运用循环伏安法、线性扫描法和计时电流法来检测乙醇及CO在不同方法制备的PtRu/C催化剂上的电催化氧化情况.发现无论在酸性溶液还是在中性溶液中,方法3制备的PtRu/C催化剂对乙醇和吸附态的CO的电氧化都有良好的催化活性.  相似文献   

5.
研究了硝酸处理碳纳米管时,不同处理时间及不同处理方法对其表面羧基的影响.通过FTIR、TEM和电化学方法的表征表明,超声震荡及煮沸都可使碳纳米管表面产生羧基,羧基量随处理时间的增加而增加.但对于硝酸处理时间不宜超过14h,硝酸硫酸混酸超声震荡不超过4 h,高氯酸硝酸混酸超声震荡处理不超过10 h.其中硝酸处理方法简便.修饰效果和重现性都较好.通过计算羧基修饰MWNTs/GC电极的电活化面积是GC电极的6倍.  相似文献   

6.
采用TiO2溶胶法,在不同后处理温度下制备了碳载Pt-TiO2(Pt-TiO2/C)催化剂.运用循环伏安法、线性扫描法和计时电流法等手段研究了催化剂对甲醇电催化氧化性能.结果表明Pt-TiO2/C催化剂对甲醇在酸性溶液中的电催化氧化活性受催化剂制备的后处理温度影响.后处理温度为80℃时催化剂对甲醇的电催化氧化活性分别是未处理、200℃和300℃后处理温度时的1.77倍、1.37倍和3.30倍.  相似文献   

7.
磁化水对大豆种子萌发期和幼苗期抗盐碱性质的影响   总被引:7,自引:0,他引:7  
用0.5%NaCl磁化水溶液和0.3%Na2CO3磁化水溶液处理大豆种子,其萌发期和幼苗期过氧化氢酶活性、超氧化物歧化酶活性、硝酸还原酶活性以及种子发芽率明显高于用0.5%NaCl自来水溶液和0.3%Na2CO3自来水溶液处理的大豆种子.结果表明,磁化水可增强大豆的抗逆性,提高大豆抵抗盐碱的能力.  相似文献   

8.
用循环伏安法制备聚L-苯丙氨酸修饰玻碳电极,研究尿酸在聚L-苯丙氨酸修饰电极上的电化学行为,建立循环伏安法测定尿酸的新方法.在pH4.0的磷酸盐缓冲溶液中,尿酸在聚L-苯丙氨酸修饰玻碳电极上出现一氧化峰,峰电位为Epa=+638mV(相对于Ag/AgCl电极),氧化峰电流与尿酸浓度在5.00×10^-7-5.00×10^-5mol/L范围内成线性关系,检测限:1.0×10^-7mol/L.对1.0×10^-5mol/LUA溶液平行测20次,其相对标准偏差为3.1%.用于尿液中尿酸的测定,结果满意  相似文献   

9.
采用溶胶-凝胶法制备复合半导体Y2O3/TiO2纳米材料.以酸性红B溶液的光催化降解反应为实验模型,考察了TiO2掺杂Y2O3后的光催化氧化活性,探讨了Y2O3掺杂量、pH值、焙烧温度及时间对Y2O3/TiO2复合氧化物催化剂光催化活性的影响及溶液浓度、光照时间、催化剂用量对酸性红B溶液降解率的影响.结果表明,Y2O3掺杂量为0.1%时,其催化活性是同样条件下催化剂TiO2的2.1倍;最适宜焙烧温度为400~450℃;焙烧时间为3h,凝胶pH=10时,催化效果最佳.在酸性红B溶液浓度为20mg/L的条件下,催化剂用量为0.15g,光照时间为2.5h对酸性红B溶液的降解率可达96.8%以上.  相似文献   

10.
本研究采用制备的SrBi2O4/Ti电极催化氧化酸性橙Ⅱ溶液,利用酸性橙Ⅱ的光催化氧化降解效率和光电催化氧化效率等指标来评价所制备电极的光电催化性能。研究发现SrBi2O4/Ti电极在钨灯和紫外灯照射下均能产生协同作用,且钨灯照射时的协同因子为239.5%,有较好的光电协同作用。  相似文献   

11.
本文利用壳聚糖(CHT)对镉离子的吸附性能并结合电化学还原法在玻碳电极(GCE)表面制备了还原态镉-壳聚糖(rCd-CHT)有机-无机杂化材料.以K3Fe(CN)6为电化学活性探针对修饰电极的电化学性能进行了循环伏安(CV)和交流阻抗(EIS)表征,结果表明rCd-CHT能大大提高该修饰电极的有效表面积,增大K3Fe(CN)6在修饰电极表面的异相电子转移速率(k0).将不同修饰电极用于抗坏血酸(AA)的电化学检测,结果显示,AA在rCd-CHT/GCE上的氧化峰电流值(Ipa)较裸GCE和CHT/GCE分别增大了1.4和2.1倍,表明rCd-CHT/GCE修饰电极对AA具有良好的电催化氧化作用.  相似文献   

12.
对n-ZnxCd1-xTe为基的光电化学电极进行FeCl3,Pb(NO3)2的修饰,消除了光电极在1M NaOH 1MS 1M Na2S多硫溶液中的钝化现象,电池效率可达10.2%,通过光谱响应,循环伏安曲线等的研究,探讨了FeCl3,Pb(NO3)2对电极的修饰机理以及与电池稳定性的关系。  相似文献   

13.
邻苯三酚红修饰碳糊电极吸附伏安法测定痕量锑的研究   总被引:5,自引:0,他引:5  
研制了采用邻苯三酚红(PR)作修饰剂的碳糊修饰电极,并利用所制备的电极作工作电极建立了测定痕量锑的方法.在0.050mol/L的H3PO4溶液中,于0V(vs.SCE)搅拌富集时,Sb(Ⅲ)与修饰电极表面的PR生成电活性络合物并吸附富集于电极表面,然后在-0.50V静止还原后,再进行阳极化扫描,在0.05V左右获得一灵敏的锑溶出峰,二次导数峰电流与锑浓度在8.0×10  相似文献   

14.
以槲皮素为模板分子,邻苯二胺为功能单体,采用循环伏安法制备了槲皮素分子印迹薄膜修饰电极,并将其用于槲皮素的检测.在HAc-NH4Ac缓冲溶液(pH 4.0)中,以微分脉冲伏安法为电化学激发信号,槲皮素在0.37 V(VS.SCE)处产生一个灵敏的氧化峰,峰电流与其浓度在8.00×10-8~1.00×10-3mol/L范围内呈线性关系,实验检出限为5.00×10-8mol/L.将新方法应用于2种银杏叶类药物中槲皮素的测定,回收率在99.2%~102%之间.  相似文献   

15.
采用纳米石墨为原料,硼氢化钠作为还原剂制得石墨烯载体GN,并制备钯催化剂Pd/GN.将催化剂均匀的涂抹在碳纸上制备工作电极后,一种采用电极处理Pd/GN-1,另一种不采用任何处理Pd/GN-2.发现采用电极处理制备的石墨烯载Pd催化剂电极对甲酸氧化阳极催化活性和稳定性有很大的提高.  相似文献   

16.
探讨TC301/γ-Al2O3和C207/γ-Al2O3双功能催化剂上合成气一步法制取二甲醚的反应,考察了催化剂浓度、原料气氢碳比和搅拌转速对一氧化碳转化率和二甲醚收率的影响.结果表明:在浆态床反应器内,催化剂C301的催化效果优于C207,且催化剂最佳浓度为7.27%;在300r/min搅拌转速下,外扩散阻力的影响基本可以消除;当原料气氢碳比为1.0时,二甲醚收率最大,进而提出利用富碳合成气生产二甲醚是缓解能源问题和减少能源污染的一条新途径.  相似文献   

17.
采用TiO2溶胶法,在不同条件下制备了碳载Pt-TiO2(Pt-TiO2/C)催化剂.运用循环伏安法和计时电流法来检测乙二醇在催化剂上的电催化氧化情况.结果发现方法c制备的Pt-TiO2/C催化剂对乙二醇在酸性溶液中的电氧化具有最佳的催化活性和稳定性.  相似文献   

18.
高分散Pt-TiO2/C催化剂对甲醇的电催化氧化   总被引:1,自引:0,他引:1  
采用TiO2溶胶法,在三种不同条件下制备了碳载Pt-TiO2(Pt-TiO2/C)催化剂。通过XRD衍射,循环伏安法(CV),线性扫描法(LSV)和计时电流法(CA)对Pt-TiO2/C催化剂的结构及其对甲醇的电氧化特性进行了研究。结果表明不同条件制备的催化剂中,TiO2的结晶度不同,Pt的粒径不同,对甲醇的电催化氧化的活性也不同。其中加入聚乙二醇形成的TiO2溶胶以甲酸为还原剂,在乙二醇体系中制备的Pt-TiO2/C催化剂中Pt的粒径小,分布均匀,对甲醇的氧化具有较高的电催化活性。甲醇在该催化剂上的氧化电流密度分别是采用硝酸或醋酸方法的1.08倍和1.43倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号