首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 625 毫秒
1.
结合钢轨与砂带的接触几何关系,建立接触区域磨削深度和轮廓计算模型,阐明磨削工艺参数对接触区参数的影响规律.随着砂带磨削半径的增加,不同钢轨廓形处接触区域面积呈对数增加,接触区域轴长半径位置也在不同截面上变化. 结合钢轨砂带磨削过程特性,求解接触区域热流密度计算模型并进行理论验证. 基于接触区域磨削深度和轮廓计算模型,以及区域热流密度计算模型,应用瞬时点热源温度场、连续作用点热源温度场、连续作用移动点热源温度场对接触区域连续作用移动面热源温度场进行离散化求解. 研究结果表明,在设定磨削工艺参数下,钢轨磨削表面的仿真和理论温度的变化趋势相似,且几乎在同一时间达到温度最大值,最高温度的仿真和理论计算的相对误差为6.14%,验证了本文理论模型和仿真的正确性.  相似文献   

2.
断续磨削温度场的计算机模拟   总被引:3,自引:0,他引:3  
根据已经建立的断续磨削温度场数学模型及其积分解通式,用VC++编程语言模拟编制出了计算断续磨削温度场的通用软件·此软件不仅可以计算断续磨削温度,而且也包括了普通磨削温度的计算,计算时考虑了磨削液和热源强度分布对磨削温度的影响·为研究普通磨削和断续磨削温度,合理选择砂轮参数,预测工件烧伤提供了一种快速有效的方法  相似文献   

3.
已加工表面热源模型研究及磨削温度场数值模拟   总被引:1,自引:0,他引:1  
为了利用浅磨模型对磨削温度场进行数值模拟,基于圆弧热源模型、砂轮和工件接触表面直角三角形热源,采用温度匹配法进行了反传热分析,建立了已加工表面热源分布形状的计算方法。该方法不需预先假设已加工表面热源的分布形状,即可根据具体的磨削条件,获得相应的热源分布形状,解决了以往已加工表面热源的分布形状常被假设为直角三角形、三角形、抛物线和椭圆等形状,但上述假设都是基于特定的磨削条件,不能普遍适用于所有磨削工况的问题。采用有限元法建立了磨削温度场的数值仿真模型(浅磨模型),计算了工件的磨削温度场,采用热成像仪测量了磨削温度场,结果表明:已加工表面热源的分布形状随着磨削条件而改变,磨削温度场的模拟结果与测量结果具有很好的一致性,磨削区已加工表面最高温度的模拟值与测量值之间相对误差在0.8%~9.5%之间,建立的浅磨模型可以准确地模拟工件的磨削温度场。  相似文献   

4.
设计了平面砂带磨削中动态磨削温度实时采集和处理微机系统。对砂带磨削时表面层温度分布及工件表面最高温度进行了试验研究。提出了砂带磨削工件表面最高温度的理论计算方法,得出砂带磨削中工件表面层温度分布情况。表面最高温度的变化规律及烧伤产生的区域,为实际生产中预防加工变质层的产生提供了依据。  相似文献   

5.
分块杯形砂轮磨削高硬度涂层球面温度   总被引:1,自引:0,他引:1  
针对分块杯形砂轮磨削高硬度涂层球面的实际工况,计算移动热源的有效宽度,并使用三角形移动热源模型对磨削温度场进行理论建模.分析了磨削运动对传热过程的影响,结合磨粒端面温度和一维导热模型计算热量传入工件比率.通过实验比较了分块杯形砂轮和普通杯形砂轮的磨削温度及磨后表面形貌,同时,分析了磨削参数对磨削温度的影响.结果表明:分块杯形砂轮磨削高硬度涂层球面较普通杯形砂轮具有更低的磨削温度和更好的磨削条件.  相似文献   

6.
在磨削温度实验的基础上, 运用有限元法对工程陶瓷氧化铝及部分稳定氧化锆进行了高效深磨磨削温度场的仿真研究.基于磨削温度的实验和传热学理论,得出了工程陶瓷工件的磨削热分配比;得出了干磨及湿磨两种状态下工程陶瓷磨削温度场的分布; 并分析了磨削温度梯度对工程陶瓷热裂纹的影响.结果表明: 随着砂轮线速度增加, 磨削温度场温度梯度增大; 而随着磨削深度增大,不同材料的磨削温度梯度变化不同,且磨削温度梯度与磨削热裂纹的产生有一定的对应关系.  相似文献   

7.
在磨削工艺实验的基础上,运用有限元方法对钛合金超高速磨削湿式温度场进行了仿真, 分析计算了超高速磨削状态下钛合金磨削区的磨削热分配率.从而得出了钛合金主要磨削参数对湿式磨削温度场的影响趋势.  相似文献   

8.
为了研究磨削温度,用实验方法和理论计算方法讨论了磨削区的最高磨削温度以及热电偶测温技术的实质和过程. 通过平面磨削实验,测量了磨削接触区的最高温度,并对测量温度值与理论计算值进行了比较,发现实验结果与采用热模型理论的计算结果基本一致.  相似文献   

9.
高速点磨削技术在装备制造业中已得到广泛的应用.通过考虑点磨削变量角α对于磨削加工中转移到工件表面热量流的影响,加载移动热源来模拟温度场分布和最高温度,并分析受此温度场影响的零件亚表面的厚度.设计正交试验进行高速点磨削加工,测量不同加工参数下得到的表面硬度,以此验证工件表面温度场仿真及得到磨削参数对于零件表面硬度影响的主次因素.结果表明,倾斜角α的引入降低了温升;切削深度则是导致磨削区域温度升高的主要因素;当工件表面的温升达到某一温度值时,会使零件的硬化层变质,破坏硬化效应.  相似文献   

10.
分析了点磨削与普通外圆磨削接触区域的不同,基于热源温度场分布和传热理论,建立了高速点磨削下温度场的理论模型和有限元模型.运用ANSYS对高速点磨削下工件与砂轮接触区域的温度场进行三维仿真,得到了接触区域温度场的分布及温度随时间变化的曲线,总结出最高温度与点磨削变量倾角α的关系,当α不为零时,磨削区域的温度低于普通外圆磨削.通过观测磨削后的工件表面金相组织可知,高速点磨削下仍出现了很薄的磨削变质层,验证了理论分析,为高速点磨削温度场的进一步研究提供了参考依据.  相似文献   

11.
为对18CrNi4A材料齿轮加工过程中出现的磨削烧伤现象进行有效控制与预防,从而达到改进工艺、延长寿命的目标,利用ABAQUS有限元仿真方法,建立了齿轮磨削仿真模型,研究了18CrNi4A材料齿轮磨削过程中砂轮线速度、磨削切深等工艺参数对磨削温度场的影响规律,确立了各工艺参数对磨削温度场影响的权重,为实现基于烧伤性能变化的磨削参数控制研究提供了参考.进行了18CrNi4A材料齿轮磨削加工试验,验证了有限元仿真分析的可信性,并得到了18CrNi4A材料的磨削烧伤临界温度,能够对18CrNi4A材料齿轮磨削加工工艺参数的确定提供一定的理论指导.   相似文献   

12.
端面微磨削对于加工硬脆材料具有显著的优势。磨削力是磨削机理研究的主要参数之一。本文基于微磨削的特点和逆磨与顺磨的不同,建立了磨削力模型。采用石英玻璃对端面微磨削进行实验研究。通过实验数据对理论模型参数值进行确定,完善并修正磨削力模型。通过实验测得的数据验证磨削力理论模型的正确性,并分析误差产生的原因。  相似文献   

13.
首次对断续带移动热源在半无限大物体上产生的三维非稳态温度场进行了有限差分分析,给出了有限差分解及其稳定性判据和计算机识别断续带状移动源位置的方法,从而为计算诸如立轴平面磨削温度场等工程实际问题提供了一种可靠的方法。  相似文献   

14.
针对端面磨削加工接触表面热力学分布特征提出一种基于动态热力耦合效应的理论建模方法.首先,建立多颗磨粒运动轨迹数学模型;其次,基于磨粒运动轨迹与磨粒高度的动态分布特征对加工工件磨削力进行解析求解;根据求得的磨削力,运用有限差分法(FDM)对端面磨削工件表面动态热力耦合过程进行分析;最后,分别采用有限元法(FEM)和端面磨削实验验证理论分析的合理性.结果表明:动态热力耦合的均一化程度会引起加工工件表面轮廓高度的差异性,减小砂轮转速可改善加工工件表面轮廓.  相似文献   

15.
在分析开槽砂轮磨削温升特点的基础上建立了新的开槽砂轮磨削温度数学模型。在解析磨削温度时,考虑了冷却液的影响。借助于电子计算机,从理论上分析了沟槽因子η和散热系数H对磨削温度的影响规律。通过试验测定了在周边开有螺旋形沟槽的砂轮磨削温度。试验结果证实了所建模型的合理性。本文所建立的热模型,也有助于分析诸如刀具的间断切削、间断铣削等其它机械加工产生的热问题。  相似文献   

16.
块体金属玻璃微磨削加工的温度场仿真   总被引:1,自引:0,他引:1  
建立单颗磨粒微磨削的正交切削模型和玻璃金属的本构关系方程,采用有限元工艺仿真系统对块体金属玻璃进行微磨削加工的温度场仿真,从而得到块体金属玻璃在微磨削过程中的温度以及温度变化趋势,进而观察其磨削温度是否达到块体金属玻璃的玻璃转变温度.因此,对玻璃金属磨削加工过程的温度仿真可以有效预测非晶表面是否有晶化现象的发生.改变微磨削加工参数,对块体金属玻璃的各个磨削区的温度变化趋势进行观察.通过仿真实验发现,块体金属玻璃的最高磨削温度发生在磨粒前刀面与磨屑接触的区域,即第二变形区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号