首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
二氧化碳连续管井筒流动传热规律研究   总被引:1,自引:1,他引:0  
基于二氧化碳在井筒内流动时的传热过程,考察二氧化碳在井筒内的热量和压力传递方式及其对相态和物性变化的影响规律。建立二氧化碳井筒内热传递模型,采用交替方向推进法进行求解,分析二氧化碳在井筒内流动过程中温度、压力和相态的变化规律。结果表明:二氧化碳在连续管内热交换效率较高,温度上升幅度随着井深的增大逐渐减小;二氧化碳沿环空上返过程中,温度逐渐降低,在靠近井口处温度显著下降;随着井深的增大,连续管内的液态二氧化碳逐渐转变为超临界态,在沿环空上返的过程中再次转变为液态,继而变为气液两相至出口。  相似文献   

2.
通过对低温CO2与井筒、地层传热机理的研究,建立了注气开发中综合考虑井筒沿程流体相态以及热物理性质变化的井筒温度、压力场数学模型,利用四阶龙格库塔法求解,并开发了"注CO2井井筒温度、压力场数值模拟"软件,研究注气过程中井筒温度、压力受不同因素影响的变化规律.结果表明,注入速度、累注量、套管直径对井底温度影响较大,注入温度对井底压力影响较大.  相似文献   

3.
超临界二氧化碳压裂液对温度、压力较为敏感,准确地预测注入过程中的井筒温压及相态直接影响着最终的压裂效果。因此,建立了考虑轴向导热、焦汤效应、膨胀(压缩)做功、摩擦生热热量分配的超临界二氧化碳压裂井筒瞬态温压模型,模拟分析了注入温度、施工排量、降阻效果、油管尺寸对井筒温压及相态的影响。研究结果表明,井筒温度降低导致的二氧化碳密度增加、流速降低,使得井口压力随井底温度同步降低。注入温度越高、施工排量越小、降阻率越高、油管尺寸越大,井底温度越高、井口压力越低。其中,井口温度增加10℃,井底温度增加约为7℃;降阻率提高20%,井口压力降低约7MPa。提高注入温度及流动通道的横截面积、降排量的同时使用稠化剂(降阻剂)可促使二氧化碳在井底达到超临界态。研究成果对超临界二氧化碳压裂的优化设计及现场应用具有较强的指导意义。  相似文献   

4.
陈勋 《科学技术与工程》2011,(25):6045-6048
井底压力控制是气体欠平衡钻井技术的核心,该文在Guo模型的基础上,采用微分迭代的方法求解井底压力。考虑气体注入速率、井口回压、井深、机械钻速和井径扩大率对井底压力的影响,并利用编制的计算程序进行模拟。模拟结果表明,随着气体注入速率、井口回压、井深、机械钻速的增大,环空井底压力逐渐升高;随着井径扩大率的增大,环空井底压力逐渐降低。计算为气体钻井设计和井控理论研究提供了一定的依据。  相似文献   

5.
目前CO2已经被用作有效的驱油剂,CO2到达井底时的热力状态对驱油效果有较大影响.针对影响井底CO2压力和温度的因素,根据液态CO2在竖直井筒中的热量传递原理和流体流动理论,在Ramey建立的物理模型基础上,建立了液态CO2井筒流动与传热数学模型,通过求解实例,得到井筒内液态CO2温度和压力的分布规律以及各因素对井底CO2参数的影响.结果表明:井筒内CO2的温度和压力随井深的增加而近似成线性增加;当注入速率增大时,气液分界面加深;井底温度随入口流量的增加而降低,而受入口温度的影响较小;井底压力随井口注入压力的增加而成比例增加,随着流量的增加呈先增后减的趋势;环空介质采用清水比空气的导热效果好.  相似文献   

6.
考虑相界面雷诺应力、拖拽力、虚拟质量力、气液物性差异等参数,创建井筒多相压力波速及压力响应数学模型,基于超深井环空多相压力波响应图版唯一性,提出压力波响应图版识别超深井气侵位置的新方法;考虑井口气体溢流量、回压、钻井液密度等边界参数,结合差分数学方法对其求解,该方法在超深井YS1井(8 680 m)验证,压力响应误差小于等于1.703 s,计算与实测误差小于等于6.15%。结果表明:随回压增大,井筒流体可压缩性减小,井筒压力波速增大,压力响应时间减小;随井口气体溢流量增大,环空空隙率增大,压力波速减小,井筒压力响应时间延长,井口气体溢流量从0.83 L/min变化至38.33 L/min,井底8 680 m处压力响应时间从10.127 s增至36.643 s,增大了261.83%;气侵位置识别结果不仅取决于井口压力及流量传感器准确度,也与压力波响应图版计算准确性有关;实践证明借助压力波响应图版识别超深井气侵溢流位置的方法可行。  相似文献   

7.
在复杂地层钻进时,地层中的气体会以重力置换、欠平衡气侵等方式进入井筒,现有的气侵检测方法主要有泥浆池液面监测、地面出口流量检测和气侵声波时差监测,但这些方法存在气侵检测效率低、不能进行早期识别预警等多种问题。针对气侵早期识别困难的难题,在考虑侵入气体物性随井筒中温度、压力变化的基础上,结合地层渗流,建立了气侵井筒传热与多相流动瞬态模型,给出了数值求解方法。通过对该模型求解,计算结果表明:在气侵过程中井底压力不断降低,并且随着气侵时间的增加,井底压力减小速率加快,与此同时,井底温度不断升高,环空返出口温度不断降低。根据该变化规律提出了以井底压力与井口温度相结合或井底温度与井底压力相结合进行气侵早期检测的新方法。  相似文献   

8.
微流量控制钻井中两相许用钻杆下行速度研究   总被引:1,自引:0,他引:1  
针对微流量控制钻井中气液两相许用钻杆下行速度问题,考虑气体滑脱、相与环空壁面阻力、回压及井底压 差,开展了对不同井深的气液两相许用钻杆下行速度半经验模型的研究,获得了气液两相许用钻杆下行速度的变化规 律。当钻杆在气液两相中下行运动时,回压的增大使井筒空隙率减小、气液两相密度增大,加载在井底的有效压力增 大,从而使许用钻杆下行速度减小;当井底气侵量增大,此时井底压力小于地层压力,许用钻杆下行速度增大,可借助 增大的激动压力消除一部分井底与地层欠压差;当井底安全压差减小,许用钻杆下行速度呈减小趋势。控压钻井中精 确计算钻杆许用下行速度,可增大钻井时效。  相似文献   

9.
CO2注入井井筒温度压力剖面计算及影响因素研究   总被引:3,自引:1,他引:2  
CO2驱既可实现提高原油采收率又可实现CO2气体的埋存,是一项非常有前景的三次采油技术.对于CO2驱,一项重要工作就是对CO2注入井筒中的温度、压力剖面进行较准确的计算,从而为优化井口注入参数以及井口注入系统设计提供理论依据.目前针对CO2注入井筒温度、压力剖面计算的相关研究由于未考虑CO2在井筒中的相态变化,因而计算结果精度较差.现将井筒中CO2的相态变化加以考虑,建立了CO2注入井井筒温度、压力计算模型,并根据三种相态方程的计算结果,选取了Peng-Robinson方程作为CO2密度及相态的计算方程.在此基础上,对CO2井口注入温度、注入量进行了敏感性研究,结果表明,二者对CO2注入井井筒温度、压力剖面均有一定影响.  相似文献   

10.
根据气藏开采过程中气体在井筒内流动的特点,得出了单相气体恒速流动状态微分方程组。阐述了不同地层温度与井口压力下井简气体流动参数的分布,并说明了不同地层温度下,井口回压对井底流压与产量的影响。结果表明,在不同的地层温度与井口压力下,井筒底部的气体速度与密度可以高于、等于或低于井筒上部的气体。通过合理控制井口压力可以调整井筒内流体流动状态参数,从而合理控制生产压差和产气量,以满足气井安全测试与生产的要求。对几口井数据的数值模拟结果验证了地层温度与井口压力对井筒气体流动参数的影响规律。  相似文献   

11.
为了准确得到非均质储层水平气井井筒内压力分布情况,结合水平井筒变质量流的压降公式、裂缝渗流的产能公式和产剖测试分析.建立了水平气井非均匀产剖储层-井筒压降耦合模型,通过微元法将非均质储层转化为均质储层求解模型.该模型将井筒水平段压降分为环空回流段和套管变质量流段两部分压降进行计算,同时考虑了摩擦压降、加速度压降和重力压...  相似文献   

12.
在稠油开采过程中,准确地预测井筒温度是选择合适的采油工艺,防止稠油结蜡增黏的基础。采用对流-扩散模型计算油管与抽油杆之间的环空内的流体传热,建立了稠油井井筒加热温度场的二维非稳态数学模型;并使用控制容积法实现模型的数值求解,模拟结果和现场实测井筒温度吻合度较好。通过模型计算,分析了电加热生产和热流体循环加热过程中影响井筒温度的诸多因素。结果表明加热流体的入口温度和流量对井筒温度场影响最明显、热流体的掺入深度存在最优范围、空心杆循环热流体的加热方法优于套管掺液,对提高稠油油井采油效率具有指导意义。  相似文献   

13.
为了解决塔河油田油藏埋藏深、原油粘度高、井筒热损失大导致自喷困难的问题,基于热量传递原理和两相流动理论,建立了井筒电加热降粘举升工艺中产液沿井筒流动与传热的数学模型,计算了产液沿井筒的温度和压力分布,分析了电加热工艺参数对电加热效果的影响。运用该模型对塔河油田1口稠油井的电加热降粘效果进行了分析,界定了电加热井筒降粘工艺对原油粘度的适应性。结果表明,电加热工艺适用的最大原油粘度为30 Pa.s,这一结果为电加热降粘工艺的应用提供了依据。  相似文献   

14.
井筒高温流体在生产过程中,向密闭环空传热引起的环空圈闭压力上升现象是深水油气开采面临的主要问题之一。为了保障井筒安全,结合深水油气井的生产实际,基于拟稳态传热以及耦合压力体积的环空压力计算方法,建立了多环空圈闭压力预测模型。根据破裂盘工作原理,建立了由内向外和由外向内的破裂盘打开阀值确定方法。以西非某井为例,对生产过程中井筒温度和环空压力进行预测。套管强度校核结果表明,正常生产过程中,表层套管和技术套管存在胀破风险;在生产套管的环空泄压或者掏空后,生产套管存在挤毁风险。采用破裂盘技术后,各层套管均满足校核的要求。因此,破裂盘技术可有效实现套管的保护,对深水油气资源安全开采具有重要意义。  相似文献   

15.
注汽井氮气隔热效果数学物理模拟研究   总被引:2,自引:0,他引:2  
为评价注汽井油套环空充填氮气的隔热效果和确定环空注氮气隔热工艺的技术条件,建立了隔热油管、油套环空充氮气隔热井筒传热物理模型和数学模型,通过物理模拟现场不同注汽参数,监测井筒模型不同半径处径向温度场分布,结合井筒传热数值模拟计算,从不同侧面评价现场注蒸汽井油套环空充氮气的隔热效果、影响因素和适用范围。研究结果表明,在油套环空不发生窜流的前提下,环空注氮气会导致井筒径向总传热系数增加,不利于井筒隔热。当油套环空发生窜流时,只要保证注氮气压力不低于注汽压力,注汽井油套环空注氮气隔热技术就是有效和值得推广的。  相似文献   

16.
为评价注汽井油套环空充填氮气的隔热效果和确定环空注氮气隔热工艺的技术条件,建立了隔热油管、油套环空充氮气隔热井筒传热物理模型和数学模型,通过物理模拟现场不同注汽参数,监测井筒模型不同半径处径向温度场分布,结合井筒传热数值模拟计算,从不同侧面评价现场注蒸汽井油套环空充氮气的隔热效果、影响因素和适用范围。研究结果表明,在油套环空不发生窜流的前提下,环空注氮气会导致井筒径向总传热系数增加,不利于井筒隔热。当油套环空发生窜流时,只要保证注氮气压力不低于注汽压力,注汽井油套环空注氮气隔热技术就是有效和值得推广的。  相似文献   

17.
对于水平井开发气藏,其生产系统由气藏渗流和水平气井井筒内流动两部分所组成。过去人们忽视水平气井井筒中的压降,给水平气井的生产系统分析带来较大的误差。文章首先利用采气指数的概念,分别建立了气藏渗流及水平气井井筒流动的数学模型,然后应用体积平衡原理将气藏渗流和水平气井井筒流动联系起来,在层流、光滑管壁紊流及粗糙管壁紊流流态下,推导出水平气井井筒压降和产量分布的表达式,实例计算和分析了一口水平气井井筒的压力和产量变化规律。为水平气井的生产系统分析提供了理论基础。  相似文献   

18.
在稠油热采过程中,提高注入工质的流动参数可显著增加采收率。为评价超临界多元热流体注入井筒后的流动传热特性,建立了相应的计算模型,得到了井底温度、压力与沿程热损失随注入流量、井口温度及井口压力的变化规律,并与注入超临界蒸汽情况下的流动传热规律进行了比较。结果表明,井底参数与注入流量呈单调关系;井底压力与井口温度、压力亦呈单调关系;而其他井口、井底参数的组合呈现出复杂关系。相同井口压力条件下,为使井底参数达到超临界状态,超临界多元热流体的井口温度和注入量高于注入超临界蒸汽的情况。适当选取较低的井口压力,可以减少热损失,提高经济性。所得结果可为注入工质参数的选取提供参考,进而为海洋稠油开发中的能源与动力保障的研究及设计明确需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号