首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escrig S  Capmas F  Dupré B  Allègre CJ 《Nature》2004,431(7004):59-63
The isotopic compositions of mid-ocean-ridge basalts (MORB) from the Indian Ocean have led to the identification of a large-scale isotopic anomaly relative to Pacific and Atlantic ocean MORB. Constraining the origin of this so-called DUPAL anomaly may lead to a better understanding of the genesis of upper-mantle heterogeneity. Previous isotopic studies have proposed recycling of ancient subcontinental lithospheric mantle or sediments with oceanic crust to be responsible for the DUPAL signature. Here we report Os, Pb, Sr and Nd isotopic compositions of Indian MORB from the Central Indian ridge, the Rodriguez triple junction and the South West Indian ridge. All measured samples have higher (187)Os/(188)Os ratios than the depleted upper-mantle value and Pb, Sr and Nd isotopic compositions that imply the involvement of at least two distinct enriched components in the Indian upper-mantle. Using isotopic and geodynamical arguments, we reject both subcontinental lithospheric mantle and recycled sediments with oceanic crust as the cause of the DUPAL anomaly. Instead, we argue that delamination of lower continental crust may explain the DUPAL isotopic signature of Indian MORB.  相似文献   

2.
Barium (Ba) isotopes can be used as potential tracers for crustal material recycling in the mantle. Determination of the Ba isotope composition of the depleted mantle is essential for such applications. However, Ba isotope data for mantle-derived basalts are still rare. In this study, we reported high-precision Ba isotope data of 30 oceanic basalts including 25 mid-ocean ridge basalts (MORBs) from geochemically and geologically diverse mid-ocean ridge segments and five back-arc basin basalts. The δ138/134Ba values of these samples varied from ?0.06‰ to +0.11‰, with no systematic cross-region variation. Together with published data, we constrained the average δ138/134Ba of global MORBs to +0.05‰±0.09‰ (2 standard deviation, n = 51). Based on depleted MORBs that have (La/Sm)N < 0.8, low 87Sr/86Sr (< 0.70263), and low Ba/Th < 71.3, we estimated the average δ138/134Ba of the depleted MORB mantle (DMM) as + 0.05‰ ± 0.05‰ (2SD, n = 16) that is significantly lower than the DMM (≈ 0.14‰) reported previously. If a new estimation of the DMM is applied, it is unreasonable to infer that the Ba isotope signatures of the “enriched-type” MORBs (E-MORBs) could be attributed to pervasive sediment recycling in the upper mantle. We, therefore, conclude that the Ba isotope compositions of the E-MORBs could be sourced from the incorporation of subducted altered oceanic crust and/or sediments depending on the Ba isotope composition and other geochemical information of the local mantle.  相似文献   

3.
Keller RA  Fisk MR  White WM 《Nature》2000,405(6787):673-676
When a mantle plume interacts with a mid-ocean ridge, both are noticeably affected. The mid-ocean ridge can display anomalously shallow bathymetry, excess volcanism, thickened crust, asymmetric sea-floor spreading and a plume component in the composition of the ridge basalts. The hotspot-related volcanism can be drawn closer to the ridge, and its geochemical composition can also be affected. Here we present Sr-Nd-Pb isotopic analyses of samples from the next-to-oldest seamount in the Hawaiian hotspot track, the Detroit seamount at 51 degrees N, which show that, 81 Myr ago, the Hawaiian hotspot produced volcanism with an isotopic signature indistinguishable from mid-ocean ridge basalt. This composition is unprecedented in the known volcanism from the Hawaiian hotspot, but is consistent with the interpretation from plate reconstructions that the hotspot was located close to a mid-ocean ridge about 80 Myr ago. As the rising mantle plume encountered the hot, low-viscosity asthenosphere and hot, thin lithosphere near the spreading centre, it appears to have entrained enough of the isotopically depleted upper mantle to overwhelm the chemical characteristics of the plume itself. The Hawaiian hotspot thus joins the growing list of hotspots that have interacted with a rift early in their history.  相似文献   

4.
Up to 10 per cent of the ocean floor consists of plateaux--regions of unusually thick oceanic crust thought to be formed by the heads of mantle plumes. Given the ubiquitous presence of recycled oceanic crust in the mantle source of hotspot basalts, it follows that plateau material should also be an important mantle constituent. Here we show that the geochemistry of the Pleistocene basalts from Logudoro, Sardinia, is compatible with the remelting of ancient ocean plateau material that has been recycled into the mantle. The Sr, Nd and Hf isotope compositions of these basalts do not show the signature of pelagic sediments. The basalts' low CaO/Al2O3 and Ce/Pb ratios, their unradiogenic 206Pb and 208Pb, and their Sr, Ba, Eu and Pb excesses indicate that their mantle source contains ancient gabbros formed initially by plagioclase accumulation, typical of plateau material. Also, the high Th/U ratios of the mantle source resemble those of plume magmas. Geochemically, the Logudoro basalts resemble those from Pitcairn Island, which contain the controversial EM-1 component that has been interpreted as arising from a mantle source sprinkled with remains of pelagic sediments. We argue, instead, that the EM-1 source from these two localities is essentially free of sedimentary material, the geochemical characteristics of these lavas being better explained by the presence of recycled oceanic plateaux. The storage of plume heads in the deep mantle through time offers a convenient explanation for the persistence of chemical and mineralogical layering in the mantle.  相似文献   

5.
The return of subducted continental crust in Samoan lavas   总被引:1,自引:0,他引:1  
Substantial quantities of terrigenous sediments are known to enter the mantle at subduction zones, but little is known about their fate in the mantle. Subducted sediment may be entrained in buoyantly upwelling plumes and returned to the Earth's surface at hotspots, but the proportion of recycled sediment in the mantle is small, and clear examples of recycled sediment in hotspot lavas are rare. Here we report remarkably enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures in Samoan lavas from three dredge locations on the underwater flanks of Savai'i island, Western Samoa. The submarine Savai'i lavas represent the most extreme 87Sr/86Sr isotope compositions reported for ocean island basalts to date. The data are consistent with the presence of a recycled sediment component (with a composition similar to the upper continental crust) in the Samoan mantle. Trace-element data show affinities similar to those of the upper continental crust--including exceptionally low Ce/Pb and Nb/U ratios--that complement the enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures. The geochemical evidence from these Samoan lavas significantly redefines the composition of the EM2 (enriched mantle 2; ref. 9) mantle endmember, and points to the presence of an ancient recycled upper continental crust component in the Samoan mantle plume.  相似文献   

6.
The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle might be reflected in spatial variations of basalt composition observed at the Earth's surface. Here we report osmium isotope data on lavas from a transect across the Azores archipelago which vary in a symmetrical pattern across what is thought to be a mantle plume. Many of the lavas from the centre of the plume have lower 187Os/188Os ratios than most ocean-island basalts and some extend to subchondritic 187Os/188Os ratios-lower than any yet reported from ocean-island basalts. These low ratios require derivation from a depleted, harzburgitic mantle, consistent with the low-iron signature of the Azores plume. Rhenium-depletion model ages extend to 2.5 Gyr, and we infer that the osmium isotope signature is unlikely to be derived from Iberian subcontinental lithospheric mantle. Instead, we interpret the osmium isotope signature as having a deep origin and infer that it may be recycled, Archaean oceanic mantle lithosphere that has delaminated from its overlying oceanic crust. If correct, our data provide evidence for deep mantle subduction and storage of oceanic mantle lithosphere during the Archaean era.  相似文献   

7.
Parman SW 《Nature》2007,446(7138):900-903
The timing of formation of the Earth's continental crust is the subject of a long-standing debate, with models ranging from early formation with little subsequent growth, to pulsed growth, to steadily increasing growth. But most models do agree that the continental crust was extracted from the mantle by partial melting. If so, such crustal extraction should have left a chemical fingerprint in the isotopic composition of the mantle. The subduction of oceanic crust and subsequent convective mixing, however, seems to have largely erased this record in most mantle isotopic systems (for example, strontium, neodymium and lead). In contrast, helium is not recycled into the mantle because it is volatile and degasses from erupted oceanic basalts. Therefore helium isotopes may potentially preserve a clearer record of mantle depletion than recycled isotopes. Here I show that the spectrum of 4He/3He ratios in ocean island basalts appears to preserve the mantle's depletion history, correlating closely with the ages of proposed continental growth pulses. The correlation independently predicts both the dominant 4He/3He peak found in modern mid-ocean-ridge basalts, as well as estimates of the initial 4He/3He ratio of the Earth. The correspondence between the ages of mantle depletion events and pulses of crustal production implies that the formation of the continental crust was indeed episodic and punctuated by large, potentially global, melting events. The proposed helium isotopic evolution model does not require a primitive, undegassed mantle reservoir, and therefore is consistent with whole mantle convection.  相似文献   

8.
The Earth's mantle is isotopically heterogeneous on length scales ranging from centimetres to more than 10(4) kilometres. This heterogeneity originates from partial melt extraction and plate tectonic recycling, whereas stirring during mantle convection tends to reduce it. Here we show that mid-ocean ridge basalts from 2,000 km along the southeast Indian ridge (SEIR) display a bimodal hafnium isotopic distribution. This bimodality reveals the presence of ancient compositional striations (streaks) in the Indian Ocean upper mantle. The number density of the streaks is described by a Poisson distribution, with an average thickness of approximately 40 km. Such a distribution is anticipated for a well-stirred upper mantle, in which heterogeneity is continually introduced by plate tectonic recycling, and redistributed by viscous stretching and convective refolding.  相似文献   

9.
Evolution of the Archaean crust by delamination and shallow subduction   总被引:12,自引:0,他引:12  
Foley SF  Buhre S  Jacob DE 《Nature》2003,421(6920):249-252
The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle.The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time.  相似文献   

10.
Salters VJ  Dick HJ 《Nature》2002,418(6893):68-72
Inferring the melting process at mid-ocean ridges, and the physical conditions under which melting takes place, usually relies on the assumption of compositional similarity between all mid-ocean-ridge basalt sources. Models of mantle melting therefore tend to be restricted to those that consider the presence of only one lithology in the mantle, peridotite. Evidence from xenoliths and peridotite massifs show that after peridotite, pyroxenite and eclogite are the most abundant rock types in the mantle. But at mid-ocean ridges, where most of the melting takes place, and in ophiolites, pyroxenite is rarely found. Here we present neodymium isotopic compositions of abyssal peridotites to investigate whether peridotite can indeed be the sole source for mid-ocean-ridge basalts. By comparing the isotopic compositions of basalts and peridotites at two segments of the southwest Indian ridge, we show that a component other than peridotite is required to explain the low end of the (143)Nd/(144)Nd variations of the basalts. This component is likely to have a lower melting temperature than peridotite, such as pyroxenite or eclogite, which could explain why it is not observed at mid-ocean ridges.  相似文献   

11.
Isotopic portrayal of the Earth's upper mantle flow field   总被引:1,自引:0,他引:1  
It is now well established that oceanic plates sink into the lower mantle at subduction zones, but the reverse process of replacing lost upper-mantle material is not well constrained. Even whether the return flow is strongly localized as narrow upwellings or more broadly distributed remains uncertain. Here we show that the distribution of long-lived radiogenic isotopes along the world's mid-ocean ridges can be used to map geochemical domains, which reflect contrasting refilling modes of the upper mantle. New hafnium isotopic data along the Southwest Indian Ridge delineate a sharp transition between an Indian province with a strong lower-mantle isotopic flavour and a South Atlantic province contaminated by advection of upper-mantle material beneath the lithospheric roots of the Archaean African craton. The upper mantle of both domains appears to be refilled through the seismically defined anomaly underlying South Africa and the Afar plume. Because of the viscous drag exerted by the continental keels, refilling of the upper mantle in the Atlantic and Indian domains appears to be slow and confined to localized upwellings. By contrast, in the unencumbered Pacific domain, upwellings seem comparatively much wider and more rapid.  相似文献   

12.
Graham DW  Lupton JE  Spera FJ  Christie DM 《Nature》2001,409(6821):701-703
Helium isotope variations in igneous rocks are important for relating isotopic heterogeneity to convective mixing in the Earth's mantle. High 3He/4He ratios at many ocean islands, along with lower and relatively uniform values in mid-ocean-ridge basalts (MORBs), are thought to result from a well mixed upper-mantle source for MORB and a distinct deeper-mantle source for ocean island basalts. At finer scales, 3He/4He variations along mid-ocean ridges have been related to underlying mantle heterogeneity, but relationships between the scales of geochemical segmentation and mantle convection remain enigmatic. Here we present helium isotope data for MORB glasses recovered along approximately 5,800 km of the southeast Indian ridge, and develop an approach to quantitatively relate spatial variations in geochemical and geophysical parameters at the Earth's surface. A point-to-point correlation analysis reveals structure in the helium isotope data at length scales of approximately 150 and approximately 400 km that appears to be related to secondary convection in the underlying mantle.  相似文献   

13.
Elliott T  Thomas A  Jeffcoate A  Niu Y 《Nature》2006,443(7111):565-568
'Recycled' crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle. Yet increasingly, problems have been noted with this model. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the 'enriched' East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability.  相似文献   

14.
Four rock assemblages in correspondence with two different tectonic settings have been recognized in the NEE-SWW extending HP-UHP metamorphic belt in southwestern Tianshan, northwest China. Eclogite assemblage EC1 is geochemically akin to alkaline within-plate oceanic island basalt (OIB). EC2 shows affinity to enriched mid-oceanic ridge basalt (EMORB). Rare earth element (REE) and other immobile trace element characteristics of blueschist assemblage BS1 resemble those of normal mid-oceanic ridge basalt (NMORB). These three assemblages are likely formed on a seamount setting, and the prevalent presence of carbonate minerals and omphacite quartzite stripes/gobbets suggests ancient pelagic sediments including marls are probably developed upon the basaltic seamount. Whereas the geochemical characteristics of BS2 assemblage are of volcanic arc basalt-type. The seamount with the pelagic sediments on it is brought into the subduction zone, and volcanic arc basalts formed on the active continental margin and trench sediments are eroded and enwrapped in the subducting mass, they are altogether subjected to high to ultrahigh pressure metamorphism and subsequent exhumation towards surface. The HP-UHP metamorphic belt is thus interpreted as a subduction-accretionary complex formed by tectonic juxtaposition and imbrication of seamount, seafloor, trench and volcanic arc sequences during oceanic crust subduction.  相似文献   

15.
Sobolev AV  Hofmann AW  Nikogosian IK 《Nature》2000,404(6781):986-990
The hypothesis that mantle plumes contain recycled oceanic crust is now widely accepted. Some specific source components of the Hawaiian plume have been inferred to represent recycled oceanic basalts, pelagic sediments or oceanic gabbros. Bulk lava compositions, however, retain the specific trace-element fingerprint of the original crustal component in only a highly attenuated form. Here we report the discovery of exotic, strontium-enriched melt inclusions in Mauna Loa olivines. Their complete trace-element patterns strongly resemble those of layered gabbros found in ophiolites, which are characterized by cumulus plagioclase with very high strontium abundances. The major-element compositions of these melts indicate that their composition cannot be the result of the assimilation of present-day oceanic crust through which the melts have travelled. Instead, the gabbro has been transformed into a (high-pressure) eclogite by subduction and recycling, and this eclogite has then been incorporated into the Hawaiian mantle plume. The trace-element signature of the original plagioclase is present only as a 'ghost' signature, which permits specific identification of the recycled rock type. The 'ghost plagioclase' trace-element signature demonstrates that the former gabbro can retain much of its original chemical identity through the convective cycle without completely mixing with other portions of the former oceanic crust.  相似文献   

16.
Extreme crustal oxygen isotope signatures preserved in coesite in diamond   总被引:3,自引:0,他引:3  
Schulze DJ  Harte B  Valley JW  Brenan JM  Channer DM 《Nature》2003,423(6935):68-70
The anomalously high and low oxygen isotope values observed in eclogite xenoliths from the upper mantle beneath cratons have been interpreted as indicating that the parent rock of the eclogites experienced alteration on the ancient sea floor. Recognition of this genetic lineage has provided the foundation for a model of the evolution of the continents whereby imbricated slabs of oceanic lithosphere underpin and promote stabilization of early cratons. Early crustal growth is thought to have been enhanced by the addition of slab-derived magmas, leaving an eclogite residuum in the upper mantle beneath the cratons. But the oxygen isotope anomalies observed in eclogite xenoliths are small relative to those in altered ocean-floor basalt and intermediate-stage subduction-zone eclogites, and this has hindered acceptance of the hypothesis that the eclogite xenoliths represent subducted and metamorphosed ocean-floor basalts. We present here the oxygen isotope composition of eclogitic mineral inclusions, analysed in situ in diamonds using an ion microprobe/secondary ion mass spectrometer. The oxygen isotope values of coesite (a polymorph of SiO2) inclusions are substantially higher than previously reported for xenoliths from the subcratonic mantle, but are typical of subduction-zone meta-basalts, and accordingly provide strong support for the link between altered ocean-floor basalts and mantle eclogite xenoliths.  相似文献   

17.
 南海存在两种火山岩:洋中脊玄武岩(MORB)和洋岛玄武岩(OIB)。国际大洋发现计划(IODP)第349、367、368、368X航次在南海海盆的成功钻取,获得了南海初始扩张(~34 Ma)和停止扩张(~15-16 Ma)前的洋壳样品。南海东部、西南次海盆及北缘洋-陆过渡带代表海盆发展的不同阶段,具有不同的地幔潜能温度、物质组成和洋脊扩张速度,因此产生的洋中脊玄武岩成分差异显著。南海地区在扩张晚期及停止扩张之后存在大规模地幔上涌,与其周缘地区的持续俯冲有关,产出的海山OIB不同于地幔柱活动产生的火山链。南海虽小,但蕴含的信息异常丰富,是窥探地球深部难得的天然窗口。  相似文献   

18.
Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean   总被引:2,自引:0,他引:2  
The Earth's mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution.  相似文献   

19.
Basaltic magmatism that builds intra-plate ocean islands is often considered to be genetically associated with "hotspots" or "mantle plumes". While there have been many discussions on why ocean island basalts (OIB) are geochemically highly enriched as an integral part of the mantle plume hypothesis, our current understanding on the origin of OIB source material remains unsatisfactory, and some prevailing ideas need revision. One of the most popular views states that OIB source material is recycled oceanic crust (ROC). Among many problems with the ROC model, the ocean crust is simply too depleted (e.g., [La/Sm]PM 〈1) to be source material for highly enriched (e.g., [La/Sm]pM 〉〉 1) OIB, Another popular view states that the enriched component of OIB comes from recycled continental crust (RCC, i.e.; terrigenous sediments). While both CC and OIB are enriched in many incompatible elements (e.g., both have [La/Sm]PM 〉〉1), the CC has characteristic enrichment in Pb and deletion in Nb, Ta, P and Ti. Such signature is too strong to be eliminated such that CC is unsuitable as source material for OIB. Plate tectonics and mantle circulation permit the presence of ROC and RCC materials in mantle source regions of basalts, but they must be volumetrically insignificant in contributing to basalt magmatism. The observation that OIB are not only enriched in incompatible elements, but also enriched in the progressively more incompatible elements indicates that the enriched component of OIB is of magmatic origin and most likely associated with low-degree melt metasomatism. H2O and CO2 rich incipient melt may form in the seismic low velocity zone (LVZ). This melt will rise because of buoyancy and concentrate into a melt rich layer atop the LVZ to metasomatize the growing lithosphere, forming the metasomatic vein lithologies. Erupted OIB melts may have three components: (1) fertile OIB source material from depth that is dominant, (2) the melt layer, and (3) assimilation of the metasomatic vein lithologies formed earlier in the growing/grown lithosphere. It is probable that the fertile source material from depth may be (or contain) recycled ancient metasomatized deep portions of oceanic lithosphere. In any attempt to explain the origin of mantle isotopic end-members as revealed from global OIB data, we must (1) remember our original assumptions that the primitive mantle (PM) soon after the core separation was compositionally uniform/homogeneous with the core playing a limited or no role in causing mantle isotopic heterogeneity; (2) not use OIB isotopes to conclude about the nature and compositions of ultimate source materials without understanding geochemical consequences of subduction zone metamorphism; and (3) ensure that models and hypotheses are consistent with the basic petrology and major/trace element geochemistry.  相似文献   

20.
Whitmarsh RB  Manatschal G  Minshull TA 《Nature》2001,413(6852):150-154
The rifting of continents involves faulting (tectonism) and magmatism, which reflect the strain-rate and temperature dependent processes of solid-state deformation and decompression melting within the Earth. Most models of this rifting have treated tectonism and magmatism separately, and few numerical simulations have attempted to include continental break-up and melting, let alone describe how continental rifting evolves into seafloor spreading. Models of this evolution conventionally juxtapose continental and oceanic crust. Here we present observations that support the existence of a zone of exhumed continental mantle, several tens of kilometres wide, between oceanic and continental crust on continental margins where magma-poor rifting has taken place. We present geophysical and geological observations from the west Iberia margin, and geological mapping of margins of the former Tethys ocean now exposed in the Alps. We use these complementary findings to propose a conceptual model that focuses on the final stage of continental extension and break-up, and the creation of a zone of exhumed continental mantle that evolves oceanward into seafloor spreading. We conclude that the evolving stress and thermal fields are constrained by a rising and narrowing ridge of asthenospheric mantle, and that magmatism and rates of extension systematically increase oceanward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号