首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
紧邻基坑同步施工下坑间隧道的变形特性   总被引:1,自引:0,他引:1  
摘要:
采用非线性平面有限元方法研究紧邻基坑同步施工下坑间土体与隧道的变形特性.将该方法运用到上海某基坑工程中的隧道位移预测,实测数据与有限元结果比较吻合,验证了其可行性.通过参数分析,讨论了基坑之间的距离、开挖宽度对坑间土体竖向位移的影响,并由此推算出了使得坑间地表土体平均竖向位移接近零的最优基坑间距与开挖宽度的关系.同时讨论了盾构隧道、明挖暗埋隧道与基坑的距离对于隧道竖向位移、支护结构侧移的影响.研究表明,开挖完成后,坑间盾构隧道的沉降比周围土体的沉降略小,而有围护结构的明挖暗埋隧道则表现为上抬,距离基坑越远,上抬量越小.
  相似文献   

2.
采用数值分析方法,研究开挖卸荷引起的基坑围护墙竖向变形机理.在有限差分软件中建立考虑土与结构共同作用的分析模型,采用理想弹塑性接触模型模拟墙土接触力学特性,对比分析了3种土体参数下墙体和墙底土体竖向位移、墙土相对位移和墙体两侧摩阻力分布特性.结果表明:墙体的竖向位移主要由墙底土体竖向隆起和墙土相对滑动共同决定;坑底土体位移主要受到土体卸荷回弹的影响,与土层参数关系较大;当黏聚力增大时,墙体的下沉量减小;砂土的摩擦角越大,墙体的竖向隆起量也越大;墙土相对滑动则受墙体两侧的摩阻力共同作用,而摩阻力受参数取值的影响;当接触属性变强时,坑内摩阻力上升的趋势将增强,墙体发生的竖向隆起量也显著增加.  相似文献   

3.
现场监测难以预测基坑和围护结构后期变形规律,为提前预判并规避基坑破坏风险,采用数值模拟方法预测基坑变形及围护结构工作状态。依托南京市和燕路过江通道八卦洲明挖段实际工程,针对悬挂式地下连续墙深基坑支护方式,动态模拟基坑开挖,研究地连墙墙体深层水平位移和墙体弯矩变化规律,对比监测数据验证模拟合理性。改变悬挂式地下连续墙厚度及埋深,发现地连墙厚度增大可减小深层水平位移,但对抗弯性能要求较大;增大墙体埋深可减小水平位移和墙体弯矩,但超过一定深度影响减小,通过寻求墙体厚度及埋深合理值,优化施工方案。  相似文献   

4.
目的基于弹性理论,采用二阶段法,研究基坑开挖对下卧隧道竖向隆起的影响.方法首先基于Boussinesq解与土体e-lgp模型、Mindlin解与土体e-lgp模型,采用分层总和法计算出隧道轴线处由于基坑土体开挖引起的土体位移,然后将土体位移作为被动荷载,作用于被动状态的弹性地基梁模型得到隧道竖向位移,结合4个实例确定合理的计算深度.结果基坑开挖引起的坑底土体隆起位移可以用高斯曲线来拟合;基于Boussinesq解的基坑隆起位移,计算深度宜取隧道轴线以下,基坑开挖深度的0.89倍;基于Mindlin解的基坑隆起位移,计算深度宜取隧道轴线以下,基坑开挖深度的0.72倍.结论基于弹性理论,采用二阶段法计算基坑开挖引起的下卧隧道隆起变形是合理的,基于Mindlin解的计算结果更符合隧道隆起的规律.  相似文献   

5.
基坑开挖对坑内工程桩的影响越来越受到工程界的重视.对天津站地下换乘中心盖挖逆作法基坑工程开挖过程中支承于桩基上的钢管柱的竖向位移进行了实测,在此基础上进行了有限元分析.实测结果及有限元分析表明:基坑开挖可导致工程桩产生较大隆起,截至底板浇筑完毕本工程实测钢管柱顶最大值达到33,mm,钢管柱之间及钢管柱与地下连续墙之间产生了可观的差异竖向变形.随着盖挖逆作法基坑分层降水、分层开挖及分层施做地下结构,钢管柱的竖向位移呈波动式发展.坑底以下土体的隆起除在引起桩发生较大的竖向位移外,在桩身还可引起一定的拉力.不同位置处工程桩对应桩身拉应力和侧阻分布相差较大,基坑边部桩受地连墙变形影响较大.在桩顶作用有较大荷载的情况下,基坑开挖后,桩身中下部仍会产生较大的拉力,在设计时须加以考虑.  相似文献   

6.
盾构区间顶部土体开挖卸载会造成基坑底部土体回弹位移,该土体回弹进而造成盾构区间整体上浮变形,会对运营中的地铁线路造成不利影响,甚至威胁地铁运营安全。目前,国内外对明挖隧道与正交下卧的轨道交通盾构区间相互影响研究较多,但明挖隧道与平行下卧轨道交通盾构区间相互影响国内外少有研究,分析明挖隧道与平行下卧的轨道交通盾构区间的竖向影响规律,为今后的类似工程提供借鉴和指导作用。  相似文献   

7.
采用统一土体移动模型三维解计算盾构施工引起的地下管线平面处土体竖向位移,并基于Pasternak地基模型对地下管线受力模型进行简化,建立单线、双线盾构隧道开挖引起的地下管线三维竖向位移计算公式。将计算结果与实测值进行对比;并探讨了管线材质、管线埋深以及土体损失率改变对管线竖向位移的影响。研究结果表明:计算结果与实测值比较吻合,可以计算单线和双线盾构开挖工况;双线隧道开挖引起的管线竖向位移大于单线隧道引起的管线竖向位移;管线材质和管线埋深的改变对管线最大竖向位移的影响较小,管线最大竖向位移随抗弯刚度增大而减小,随埋深增大而增大;土体损失率的改变对管线最大竖向位移的影响较大,土体损失率越大管线最大竖向位移也越大。  相似文献   

8.
基于正交试验的深基坑变形影响因素及特征机理研究   总被引:1,自引:1,他引:0  
运用正交试验原理,以深基坑的地连墙的插入比、地连墙刚度、内撑横间距、一次开挖深度为因素,把深基坑开挖后地表最大沉降、坑底最大隆起以及地连墙最大水平位移作为分析基坑变形的三个指标,利用数值模拟方法对太原地铁车站深基坑的稳定性特征进行了分析。采用直观分析和多元回归分析的方法揭示了各因素在深基坑开挖变形过程中的影响机理及重要性次序。结果表明:在其他施工方式和支护参数保持不变的条件下,地表沉降、坑底隆起和墙体水平位移的最显著影响因素均为地连墙的插入比,地表沉降和坑底隆起的其他影响因素依次为内撑横间距、地连墙刚度、一次开挖深度。墙体位移的其他影响因素依次为内撑横间距、一次开挖深度以及地连墙刚度。采用多元回归方法得到了深基坑变形与各个因素之间的相关规律,并得出地连墙插入比的理想范围是0.7~0.8的结果。  相似文献   

9.
浅埋偏压赋存条件是诱发连拱隧道大变形灾害的重要因素.以某浅埋偏压公路连拱隧道工程为背景,借助数值模拟方法对比研究不同开挖方案条件下偏压连拱隧道围岩、支护结构及曲中墙力学行为变化规律,并结合现场实测数据分析偏压洞口失稳灾害原因及处治措施.研究结果表明,围岩水平位移和竖向位移呈非对称分布,施工阶段埋深较大侧围岩变形受偏压荷载作用影响更为显著;不同开挖方案条件下中墙水平应力分布差异不明显,而竖向应力分布差异较大,中墙墙脚(拱脚)位置出现水平压应力集中现象;方案Ⅱ条件下隧道初期支护拱顶水平和竖向位移均约为方案I的1.40倍以上,且方案Ⅱ更易引起埋深较大侧隧道中墙墙体因遭受附加偏压荷载作用而发生压裂破坏;针对浅埋偏压洞口大变形诱发原因,给出相应的防治措施,加固处治效果显著.研究成果可为浅埋偏压隧道施工变形控制和灾害防治提供科学参考.  相似文献   

10.
《河南科学》2017,(7):1083-1089
城市地下空间的开发,常出现在既有隧道附近开挖土体.通过三轴试验得出土体南水双屈服面模型参数,根据刚度折减法建立数值模型,分析隧道埋深和基坑偏移对隧道结构的影响.研究表明:开挖后基坑附近的隧道产生向上的位移,基坑中部位移较大,边缘位移较小.隧道埋深越大,上升位移量越小;埋深30 m时,基坑中心和边缘处隧道的竖向位移差最大,弯曲变形和弯曲拉应力也最大.基坑向右偏移12 m时,左侧隧道的上升位移较大,且基坑中心和边缘处的竖向位移差较大,产生较大的弯曲变形和弯曲应力;基坑位于右侧隧道正上方时,上升位移量和差异变形量均较大,其中拉应力和应力的变化最大.  相似文献   

11.
内支撑基坑群开挖相互影响的三维数值分析   总被引:1,自引:0,他引:1  
通过Z-Soil岩土三维分析软件,以小应变硬化土(hardening soil model with small strain stiffness,HSS)模型为基础,建立地连墙与内支撑联合支护的群体基坑开挖的三维数值模型.对基坑土体的的竖向位移以及地连墙的变形和受力进行了分析,讨论了基坑间距的影响.分析结果表明:临坑的开挖使紧邻的坑间土堤沉降增加约1倍,使群坑周边沉降增加约10%;先开挖的基坑支护结构受力、变形增大,后续开挖的基坑的地连墙顶会向先开挖基坑方向产生整体侧移,基坑间距越近,影响越明显.  相似文献   

12.
"两墙合一"条件下地铁车站深基坑变形特性   总被引:1,自引:0,他引:1  
针对地铁车站深基坑施工主体回筑后受力变形特性与空间效应复杂的问题,综合采用模型试验和数值模拟方法,对土体沉降与支护体系变形特性进行分析,得到地连墙水平位移、周围地表沉降规律、沉降与位移之间的相互影响关系以及基坑的三维空间效应.研究结果表明:本文条件下地表沉降的主要影响范围为0.5He~1.5He(He为基坑深度);最大地表沉降与地连墙最大水平位移的比值为1.0~1.6,地表沉降随地连墙水平位移的增大呈非线性增大,最大地表沉降、地连墙最大水平位移与开挖深度具有线性关系;基坑边角效应对地表沉降的影响大于对基坑水平位移的影响,基坑水平位移的空间效应相比地表沉降大约滞后0.5He的距离.  相似文献   

13.
以某高速公路连拱隧道为研究对象,采用数值模拟方法研究破碎岩质斜坡下浅埋连拱隧道施工力学响应特征,并分析加固措施和开挖顺序对隧道围岩和结构应力与位移的影响规律。研究结果表明,偏压连拱隧道围岩水平和竖向位移均呈非对称分布,斜坡左上方为水平位移敏感区,拱顶和隧底竖向位移分别表现为沉降和隆起;中墙墙脚处出现水平应力集中现象,深埋侧中墙墙身受偏压作用显著,加固围岩可降低中墙墙身应力约16%以上,而先开挖深埋侧隧道会引起中墙墙身竖向应力增加达22%;初期支护结构位移呈非对称曲线分布,拱脚位置水平位移较大,左右两侧位移方向相反;从控制围岩和支护结构位移角度,采取斜坡与隧底破碎围岩注浆加固措施后处治效果显著,且宜优先进行地形偏压浅埋侧隧道施工。研究成果可为类似地质地形条件的偏压隧道设计与施工提供科学参考。  相似文献   

14.
确定盾构隧道开挖面极限支护压力是隧道工程中的核心问题之一。现有研究一般忽略盾构刀盘与主动极限状态时开挖面前方失稳土体间的摩擦效应,导致计算结果偏保守。为了解决此问题,首先,基于梯形楔形体模型,考虑盾构开挖掌子面与前方被切削土体之间的竖向摩擦力、楔形体与上方土柱之间因相对错动引起的横向摩擦力以及隧道埋深对极限支护压力的影响,推导了砂土地层盾构开挖面的极限支护压力计算公式;其次,通过与其他理论方法及试验结果进行对比,验证了本文方法的合理性;最后,讨论了刀土摩擦力在不同工况下对盾构开挖面极限支护压力的影响规律。研究结果表明:在其他参数不变时,开挖面极限支护压力随着刀土外摩擦角增大而逐渐减小,与刀土外摩擦角近似呈线性关系;刀盘土体间摩擦力对维持盾构开挖面稳定具有有利影响,对开挖面极限支护压力的影响不可忽略;适当增大刀盘与前方土体间的外摩擦角可有效增加开挖面的极限稳定性;刀土摩擦力对浅埋情况的盾构隧道开挖面极限支护压力的影响要明显比深埋情况的影响大,在选择盾构掘进刀具时应重点考虑埋深的影响。  相似文献   

15.
为研究软土区地铁深基坑围护结构变形及周边土体位移特性,运用ABAQUS软件对软土区某地铁深基坑施工过程进行建模分析和安全监测,并将计算结果与实测数据进行对比分析.结果表明:采用摩尔库伦模型模拟基坑施工过程得到的地连墙水平位移结果准确,墙体最大水平位移的平均计算误差为实测值的15%,周边土体沉降计算值与实测值相比偏小;开挖最后一层土体且开挖面附近无支撑作用时,墙体水平变形明显增大,长边中点断面及端部断面变形增量分别为9.1和10.5 mm,安全监测应以开挖面附近地连墙水平位移变化速率为控制指标;狭长型深基坑长边中点断面及端部断面地连墙变形差异较大,应针对不同位置分别制定变形监测预警值;支撑轴力在开挖下一层土体时会出现较大突变,设计应充分考虑该突变对支撑安全储备的影响,监测应重点关注突变前后支撑轴力的变化.  相似文献   

16.
基坑开挖会造成下部隧道周围土压力变化以及土体产生位移,使隧道结构稳定性受到影响,从而变形控制显得尤为重要。以合肥南站南广场基坑工程实测数据为例,采用PLAXIS 2D有限元软件对基坑下部隧道和地表变形的情况进行数值计算。研究表明:数值计算结果与实测值较为吻合,隧道发生竖向和水平位移,竖向位移比水平位移大,隧道的位移值随着开挖深度呈线性趋势;基坑开挖会引起隧道上方地表变形,地表沉降呈向下二次抛物线形式,坑底产生了塑性隆起。  相似文献   

17.
为研究地铁车站基坑围护结构的力学性状及周边土体变形情况,运用ABAQUS软件建立地铁深基坑开挖全过程的三维数值模型,在充分考虑材料非线性的基础上,结合特定断面分析基坑开挖全过程中支护结构和基坑的变形情况。结果表明:坑底竖向位移与开挖深度呈正相关,整体表现为“鼓肚子”的变形形式;随着开挖深度的增加,支护结构侧向位移先增大后减小,最大位移出现在墙体顶部以下0.7H~0.8H处,且端头井处侧向位移明显小于标准段;基坑开挖导致地连墙周边10 m范围内出现明显的地面倾斜,会对既有建筑物造成不利影响,距离基坑边缘30 m以外的地面倾斜则不会对地面建筑造成明显影响。  相似文献   

18.
为评估明挖地铁区间隧道施工对高架桥的影响,结合重庆轨道交通环线某区间隧道施工,采用有限元分析软件MIDAS-GTS建立了隧道及桥墩的三维模型进行数值模拟,分析了隧道开挖对桥墩、围岩的应力及位移影响.结果表明:隧道开挖后围岩和桥墩沉降的不同,桥梁桩身将受到围岩的负摩擦力作用;隧道开挖在桥墩距隧道近端引起的桩基位移向下,在远端引起的竖向位移向上;开挖荷载对桩基应力影响不仅与桥墩到开挖隧道之间的距离有关,还与桥梁桩基高度有关,隧道支护锚杆最大轴力为7.07 k N能满足安全稳定性的要求.  相似文献   

19.
根据某国际贸易大厦基坑开挖现场的实际情况及其施工过程,采用有限元程序ABAQUS,建立基坑支护三维数值分析模型,通过改变支撑、地下室的楼板和预加应力的大小,考虑不同基坑支护形式,分析了5种工况条件下基坑坑底回弹隆起情况,并与实测结果进行对比,验证所建数值分析模型的合理性.研究表明:支撑对基坑坑底回弹隆起的影响主要集中在地连墙附近,并随基坑宽度增大而增大;基坑中部位置坑底回弹隆起变形最终收敛;基坑形状的不对称对于小矩形基坑的影响较大,对大矩形基坑的影响较小,基坑坑底回弹隆起呈对称形状;地连墙的变形越大,墙后土体变形越大,其坑底回弹隆起量越小.  相似文献   

20.
为研究软土地层中基坑开挖卸荷时效及其对邻侧隧道影响,设计并实施了相似比为1:20的物理模型试验,得到了基坑围护结构变形、地表沉降、坑底隆起、隧道竖向变形、隧道水平变形以及隧道断面收敛变形等数据。研究结果表明:基坑开挖引起的围护结构最大侧向变形为0.61%H(H为基坑深度),大于上海软土地区地铁车站基坑围护结构最大值的上限0.50%H;分步开挖过程中的墙体侧向变形和地表沉降具有明显的时间效应,卸荷时效对基坑变形的影响随开挖深度增加而增强;基坑开挖引起隧道变形以朝向坑内的水平变形为主,同时伴随少量朝上的竖向变形;隧道侧向变形与相同深度处围护结构侧向变形大致呈线性关系,据此可预估后续开挖引起的隧道侧向变形;基坑开挖引起邻近隧道产生径向收敛变形,隧道断面呈“横向伸长、竖向压缩”的特点,横向收敛约为竖向收敛变形的1.7倍;当隧道与基坑开挖面的竖向净距在0.2H~0.5H时,基坑开挖卸荷引起的隧道变形响应十分敏感,隧道竖向变形随坑底隆起增加而显著增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号