首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
m-限制边割将连通图分离成阶不小于m的连通分支,图G的最小m-限制边割所含的边数称为图的m-限制边连通度.本文给出了n立方体的m-限制边连通度的表达式,由此推出:当m≤2(n/2)-1或m=2 k≤2n-1(k为任意正整数)时,超立方体Qn是极大m-限制边连通的.  相似文献   

2.
如果图G的每个极小点割(边割)都孤立一个点,则图G是超点连通(超边连通)的。图G的至少孤立一条边的边割称为限制性边割,其最小基数计作λ′(G)。当λ′(G)=ξ(G)时,称图G是λ′-最优,其中ξ(G)是图G的最小边度。本文给出了点积图是超点连通、超边连通、的一些充分条件。  相似文献   

3.
设S是连通图G的一个边割。若G-S不包含孤立点,则称S是G的一个限制边割。图G的最小限制边割的边数称为G的限制边连通度,记为λ'(G).如果图G的限制边连通度等于其最小度,则称图G是最优限制边连通的,简称λ'-最优的。设G是一个n阶的连通无三角图,且最小度δ(G)≥2.文章证明了,若最小边度ξ(G)≥(n/2-2 )(1+1/δ(G)-1),则G是λ'-最优的。并由此推出,若连通无三角图G的最小度δ(G)≥n/4+1,则G是λ'-最优的。最后给出例子说明这些结果给出的边界都是紧的。  相似文献   

4.
设G是有限简单无向图,使G-S每个分支的阶至少为4的边割S称为G的4阶限制边割.G的4阶限制边连通度λ4(G)是G的4阶限制边割之中最少的边数,达到最小的叫λ4边割.定义ξ4(G)=min{(U):UV(G),G[U]是4阶连通子图},此处(U)表示恰好有一个端点在U中的边数.若λ4(G)=ξ4(G),则称G是λ4最优的.若任意λ4边割都孤立一个4阶连通子图,则称G是超级λ4连通的.给出图是λ4最优和超级λ4连通的度条件,并举例说明条件的最好可能性.  相似文献   

5.
高敬振  张淑芹 《科学技术与工程》2007,7(15):3639-36413659
图G的m-限制边割是删除它以后G不连通,且留下的每个分支的阶至少为m的边子集;m-限制边割的最小基数称为m-限制边连通度。设G是连通(k-2)-正则图,阶至少为2k(k≥5)。证明了G的k-限制边连通度存在当且仅当G不属于一种特殊图类G^* k-2.  相似文献   

6.
设G是有限简单无向图,k是正整数.使G-S每个分支的阶不小于k的边割S称为G的k阶限制边割.G的四阶限制边连通度λ4(G)是G的四阶限制边割之中最少的边数.若对于任意边e∈E(G),均有λ4(G-e)=λ4(G)-1,则称G是极小四阶限制边连通图.定义ξ4(G)=min {(e)(U):U(∪)V(G),G[U]是四阶连通导出子图},此处(e)(U)表示恰好有一个点在U上的边的数目.若λ4(G)=ξ4(G),则称G是λ4最优的.若每个5阶限制边割都孤立出G的一个5阶连通子图,则称G是超级5阶边连通的.笔者给出:极小四阶限制边连通图若不是λ4最优的,则是3正则,围长为5,任意边都关联5圈,且是超级5阶边连通的图.  相似文献   

7.
设S是图G的一个边子集,若G-S不连通且每个分支的阶至少为k,则称S为G的一个k-限制边割.若G有k-限制连割,G的最小k-限制边割的边数称为G的k阶限制边连通度,记为λk(G).记ξk(G)=min{|[X,]|∶|X|=k,G|X|连通},若λk(G)=ξk(G),则称G是λK-最优的.证明了若对G中任意一对不相邻的顶点x,y都有d(x) d(y)≥n 2(k-2),且G不是G*k图,则G是λk-最优的.  相似文献   

8.
设G=(V,E)是一个连通图.如果λ3(G)=ξ3(G),则G是λ3-最优或者极大3-限制性边连通的,其中ξ3(G)=min{|[X,Y]|:XV,|X|=3,G[X]连通}.G的逆度是指R(G)=∑v∈V1/d(v).本文主要研究R(G)与顶点数n,最小度δ及ξ3的关系,并由此得到一函数,用这一函数来限制R(G),使G是λ3-最优的.  相似文献   

9.
设G=(V,E)是一个连通图.边集SE,如果G-S不连通且G-S的每个连通分支至少有2个点,则称S是一个限制性边割.限制性边连通度λ′(G)就是G的最小限制性边割的基数.如果限制性边割存在,则称G是λ′-连通的.如果λ′(G)=ξ(G),则G是λ′-最优或者极大限制性边连通的,其中ξ(G)=min{|[X,Y]|:XV,|X|=2,G[X]连通}.图G的逆度是指R(G)=∑_v∈V 1/d(v).在此基础上,主要得到了:如果G是λ′-连通围长大于等于5的n阶图,且δ(G)≥2,如果R(G)小于某个关于最小度和顶点数的值,则G是λ′-最优的.对于不含钻石的图也得到了类似的结果.  相似文献   

10.
图是λ′最优和超级λ′的充分条件   总被引:1,自引:1,他引:0  
设G是有限简单无向图,使G-S的每个分支都不含孤立的边割S称为G的限制边割.G的限制连连通度λ′(G)是G的限制边割之中最少的边数,定义ξ(G)=min{d(x)+d(y)-2;xy∈E(G)}为G的最小边度.如果λ′(G)=ξ(G),则称G是λ′最优的.若任意最小限制边割都弧立一边,则称图G是超级λ′的.应用范型度条件给出了图是λ′最优和超级λ′的令分条件.  相似文献   

11.
设S是连通图G中的一个边子集。若G S不连通且它的每个连通分支的阶至少为k,则称S是G的一个k限制边割。图G的最小k限制边割的边数称为G的k限制边连通度,记为λκ(G)。定义ξκ(G)=min{|[X,X]|:|X|=k,G[X]连通},其中X=V(G)\X。若λk (G)=ξk(G),则称G是极大k限制边连通的。设G是一个围长至少为5的λ3 连通图。本文证明了若G中不存在5个点u1,u2,v1,v2,v3使得d(ui,vj)≥3(i=1,2;j=1,2,3),则G是极大3限制边连通的。  相似文献   

12.
设G是一个连通图,F是G的一个边割,若G-F的每个连通分支至少有m个顶点,则称F是G的一个m限制边割.若图G存在m限制边割,则称图G是m限制边连通图.文章刻画了只含一个圈且长度为5的m限制边连通图.  相似文献   

13.
笛卡尔乘积图的限制边连通性   总被引:1,自引:1,他引:0  
设G是一个极大限制边连通k-正则图,k≥2.论文证明了:如果│G│〉2k且n≥3,那么笛卡尔乘积图Pn×G是超级限制边连通的,除非G包含子图Kk;如果│G│〉k+1且n≥3,那么Cn×G是超级限制边连通的,除非n=3且G是圈.  相似文献   

14.
限制边割将连通图分离成不合孤立点的不连通图,如果最小限制边割只能分离孤立边,则称图G是超级限制边连通的.证明了如果k>|G|/2 1,那么k正则连通图G是超级限制边连通的,k的下界在一定程度上是不可改进的.  相似文献   

15.
k等周边连通度是一个比边连通度更可靠的网络可靠性参数。 连通图G的k等周边连通度定义为γk(G)=min{[X,X-]:XV(G),X≥k,X-≥k},其中X-=V(G)\X。令βk(G)=min{[X,X-]:XV(G),X=k}。图G是极大k等周边连通的如果γk(G)=βk(G)。令G是一个阶至少为6的连通图。本文证明了如果对于G中任意一对不相邻的顶点u,v,当u和v都不在三角形中时满足N(u)∩N(v)≥2;当u和v中至少有一个在三角形中时满足N(u)∩N(v)≥5,那么G是极大3等周边连通的。  相似文献   

16.
许多网络拓朴结构是通过图的运算得到的.超边连通性是衡量网络可靠性的一个重要尺度.一个图G为最优-λ'图,如果其限制性边连通度λ'(G)等于其最小边度ζ(G).一个最优-λ′图被称为超-λ'图,如果从G中去掉任何一个最小限制性边割都会产生孤立边.考虑图的三类运算;证明了如果原始图为正则的最优-λ'图,则运算后的图是超-λ'图.  相似文献   

17.
对于度k( ≥ 2 )的点可迁连通图的限制边连通度λ′,已知k≤λ′≤ 2k- 2 ,且λ′的界可以达到 .在此基础上 ,对度为k的点可迁图G进一步给出了满足λ′(G) =k的两个充要条件 .接着 ,对任意的连通图G0 证明了λ′(K2 ×G0 ) =min{2δ (G0 ) ,2λ′(G0 ) ,v(G0 ) }.最后证明了对任意满足 0≤s≤k- 3的整数s,存在度为k的点可迁连通图G满足λ′(G)=k s当且仅当k为奇数或者s为偶数  相似文献   

18.
高敬振  马玉 《山东科学》2011,24(1):61-64
设G是有限简单无向图,是G-U不连通,且G-U的每个分支的阶都至少为4的边集U称为G的4-限制边割。基数最小的4-限制边割称为λ4-割,最小基数称作4-限制边连通度,记作λ44(G)。若λ4(G)=ξ4(G),称G是λ4-最优的。若任意一个λ4-割都孤立一个四阶连通子图,则称G是超级-λ4的。应用邻域交条件给出了图是λ4-最优的和超级-λ4的充分条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号