首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
滕虎  黄勋  修志龙  冯恩民 《科学通报》2005,50(15):1605-1612
以酵母细胞周期行为作为研究对象, 综合分析了Puc1, Cig1, Cig2和Cdc13共4种周期蛋白在细胞周期G1/S, G2/M和M后期转换的调控作用, 绘制了周期调控机制的蛋白相互作用网络图, 并建立了对其动态行为进行描述的数学模型. 通过对不同突变体种型模拟结果的比较, 进一步说明了各种周期蛋白在细胞周期进程中对S期启动、G2/M周期时相转换所起的作用.  相似文献   

2.
我们所观察到的年轮,是在树桩上看到的那一圈圈同心的圆形纹路,像极了操场跑道,一条跑道代表一道年轮.当树木生长季节开始时,在老的木质部和韧皮部之间会产生大量体大、壁薄的细胞,即形成层.随着生长季结束,细胞个体日渐变小,胞壁加厚,直到形成层细胞停止产生,完成一个生长周期.  相似文献   

3.
细胞周期的驱动及其调控   总被引:7,自引:1,他引:7  
吴家睿 《科学通报》2002,47(11):805-811
细胞周期是生命活动中一个最重要的过程,对它的研究也是现代生命科学的一个主要内容,从大量的研究文献以及最新进展中选择了一些具有 代表性的工作,对细胞周期的驱动及其调控进行了较为全面的总结和评述,细胞周期运动的动力主要来自依赖周期蛋白激酶(CDK),它的活性则通过周期蛋白(cyclin)和依赖周期蛋白激酶抑制剂(CKI)进行控制。细胞周期的调控方式有两种:正调控-在满足细胞周期某些特定阶段的生长条件后细胞周期才能进行;负调控-保证细胞周期运行质量的检查机制。只有当异常事件出现时这类调节机制才被激活, 被称为周期检查点, 细胞周期的分子调控机理可分为两类;质的控制,主要指蛋白质的磷酸化状态和在细胞内空间位置的控制;量的控制,指蛋白质的 表达和降解,这些调控方式相互制约或进行耦联,形成一个复杂的细胞周期分子调控网络。  相似文献   

4.
梁全铎  张强 《科学通报》2023,(35):4782-4792
脑科学研究是当今自然科学面临的一项重要挑战.大脑是人体的神经枢纽,控制着人体的各项生理活动.脑神经信号监测与调控技术能够建立大脑与外部设备之间的信息连接通路,从而实现对大脑中信息的读取以及对脑活动的控制,因此在疾病诊疗、军事、教育、娱乐等领域具有广阔的发展和应用前景.尽管目前脑神经信号监测与调控技术已经取得一定成果,但对于侵入式脑信号监测与调控技术的研究仍处于起步阶段.本文简要介绍脑神经信号监测与调控技术的基本原理,从信号获取、调控手段和电极制备等关键技术角度阐述侵入式脑信号监测与调控技术的国内外研究现状,讨论其面临的信号质量、调控准确性和生物安全等方面的挑战.最后,展望该技术在脑机接口等前沿领域中的应用前景.  相似文献   

5.
植物激素定量分析方法研究进展   总被引:5,自引:0,他引:5  
植物激素是对植物生长发育具有重要调控作用的小分子化合物, 在低浓度下就能发挥生理作用, 参与调控植物生长发育的每一过程. 植物激素的合成、运输、代谢和分子作用机理的深入研究都需要对植物激素进行定量分析. 但是, 植物激素定量分析受到低含量、次生代谢产物背景干扰严重等因素的影响, 一直是植物激素研究领域的瓶颈. 近年来, 随着植物激素在提取、纯化和检测方法等方面的发展, 植物激素定量分析取得一定进展. 固相萃取技术和色谱/质谱联用技术的发展为植物激素的高效提取纯化和准确定量分析提供了可能, 成为植物激素定量分析领域广泛被接受的技术手段. 此外, 液相萃取、免疫纯化、免疫分析和电化学分析等纯化检测方法在植物激素分析中也有应用, 本文对各种纯化检测方法进行了比较和讨论. 随着植物激素调控机理和植物激素互作研究的深入, 需要对原位、动态和多种植物激素同时检测, 这将是植物激素分析领域的未来研究方向.  相似文献   

6.
郭振坤  李凤明 《科学通报》2022,(12):1249-1263
周期超材料结构由多个相同的子结构根据一定的规律性和周期性组成,具有特殊的力学特性,比如带隙.弹性波只能在特定的频带(通带)内沿超材料结构传播,而在其他频带(带隙或禁带)内的弹性波将被阻隔.利用带隙特性可以实现弹性波过滤、振动和噪声控制等,由此学者进行了大量的研究工作,希望获得各种具有更好带隙特性的超材料结构.然而在实际工程应用中,超材料结构的尺寸往往已被固定,频率带隙的宽度以及位置往往成为限制其实用性的问题.因此,分析超材料结构中弹性波带隙的主动调控具有重要的理论与实际意义,可以为周期结构的振动控制和减振设计提供理论依据.本文针对周期超材料结构,综述了其中弹性波带隙主动调控问题的研究现状,简述了近年来发展的弹性波带隙主动调控研究方法,介绍了热点的研究结果,并提出了值得进一步深入研究的问题.  相似文献   

7.
全寿命周期管理即对工程项目全寿命周期内各阶段各项活动进行全局、全过程的管理.变电站作为电力资源实现优化配置的重要载体,是电网的重要组成部分之一,其高质量的建设和安全稳定的运行将决定电网安全,因此用全寿命周期管理进行变电站的设计非常重要.文章主要针对变电站设计中全寿命周期管理理念的应用进行初步探讨.  相似文献   

8.
蓝藻水华与淡水鱼类的生态相互作用研究进展   总被引:1,自引:0,他引:1  
《科学通报》2021,66(21):2649-2662
鱼类是淡水生态系统的重要组成部分.近年来水体富营养化和蓝藻水华暴发导致的水环境恶化、适宜栖息地丧失等生态问题,对鱼类生存及渔业经济带来巨大威胁和影响.蓝藻和鱼类的生态作用是相互的,利用鱼类调控蓝藻过度增长的生物操纵技术在某些富营养化水体治理过程中取得了一定效果.在此背景下,全面评估蓝藻水华对淡水鱼类种群的影响,以及鱼类对蓝藻生长的控制与驱动效应,是进一步推进淡水生态系统治理与保护研究的关键.本文系统归纳分析了蓝藻水华对淡水渔业的危害、有害蓝藻及其次生代谢产物对鱼类的毒性效应以及鱼类对蓝藻的生态调控作用,并对未来的重点研究方向进行展望,提出复杂蓝藻生物质或原位蓝藻水华对鱼类影响的综合效应和相关的水生态风险评价将是未来研究的重点.生物操纵技术的可行性应依据所治理水体的基本环境和生物特征,结合具体实践进行判断和决策.本文旨在为蓝藻水华的生态风险评估、淡水鱼类资源的保护,以及水生态环境的改善提供科学依据.  相似文献   

9.
禾本科作物小麦能吸收和积累聚苯乙烯塑料微球   总被引:3,自引:0,他引:3  
李瑞杰  李连祯  张云超  杨杰  涂晨  周倩  李远  骆永明 《科学通报》2020,65(20):2120-2127
农用地土壤中微塑料的积累及分布已有报道,食用蔬菜在溶液培养下能吸收微塑料也已被发现,但微塑料能否在固相培养条件下进入禾本科作物中并在体内传递积累尚未被证实.本研究选用小麦作为模式植物,以0.2μm荧光标记聚苯乙烯微球为供试微塑料材料,采用真实河砂盆栽培养实验,结合激光共聚焦荧光显微和扫描电子显微技术,发现小麦幼苗在砂培条件下能吸收和传输0.2μm聚苯乙烯微球.小麦幼苗在含有荧光标记微球的河砂中生长21 d后,其根部维管柱和外皮层细胞壁间隙组织中呈现较强的荧光分布,表明这种亚微米级塑料微球能被小麦吸收进入根部外皮层质外体空间和维管组织.塑料微球进入根部维管柱后,可通过维管组织运输到地上部的茎部维管束和叶片的脉管组织中.研究结果为进一步认知土壤-作物系统中微塑料的传递与积累机制提供了方法学和科学依据.  相似文献   

10.
微生物究竟利用煤岩中的哪些物质并通过何种具体途径形成次生生物气,煤层中是否含有丰富的此类物质可形成大量的次生生物气,是重要的基础科学问题.在多方面研究的基础上,运用气体同位素示踪、煤有机地球化学分析与煤热模拟产气实验等方法,对上述问题进行了系统的综合性研究.结果表明:次生生物气形成的具体途径是微生物还原CO2;产次生生物气的煤层具有遭受过微生物降解的特征;热成因气态重烃亦经历了微生物的改造并有可能形成微生物成因CO2;煤在热演化过程中可形成大量的CO2、较多的H2和一定量的气态重烃,加之微生物成因的CO2及煤层水,都可成为次生生物气的直接母源物质.故可溶有机质与气态重烃等组分都可为其他微生物所利用并最终形成次生生物气的母源先质.中低热演化程度的煤层中这些组分丰富,应是形成和寻找次生生物气的主力煤层.  相似文献   

11.
点点滴滴     
太阳黑子对寿命的影响 美国最新研究表明,太阳黑子的数量影响到人们的寿命。 众所周知,太阳黑子活动周期大约为11年。长期以来,科学家和思想家致力于太阳黑子活动周期的研究,及此周期与气候、健康和政治变化的关系。 研究表明,如果你在太阳黑子活动最高潮的20年后出生,一般生  相似文献   

12.
细胞作为一个动态的开放系统,可以与周围环境不断进行物质和能量交换,因而细胞体积可以发生很大的变化.研究发现,细胞体积的变化能够调控细胞的力学性质、代谢活动、细胞活性、细胞繁殖和基因表达等生理活动.但是细胞体积和压力调控的力学机制,以及细胞体积的变化对各种生理过程产生影响的物理机制仍有待研究.本文将介绍相关的研究进展,特别是关于动物细胞体积和压力调控机制的基本力学生物学模型,并讨论细胞体积变化对癌细胞迁移以及细胞黏附和脱黏的影响机制.  相似文献   

13.
磷酸化是一种常见的蛋白质翻译后修饰形式,调控蛋白质的活性、稳定性、细胞内定位和蛋白质互作等功能.在真核细胞中,丝氨酸、苏氨酸和酪氨酸是最常见的磷酸化位点.在流感病毒复制的生命周期中,病毒蛋白可被宿主激酶磷酸化修饰,并调节其核质穿梭、信号转导等功能,从而调控病毒的生长、复制和致病力.本文就近年来关于流感病毒内部核蛋白、基质蛋白1、非结构蛋白1的磷酸化修饰位点和其生物学功能进行综述,为深入了解流感病毒复制周期及抗病毒药物研发提供理论基础.  相似文献   

14.
油菜次生休眠种子转录组的RNA-seq分析   总被引:1,自引:0,他引:1  
油菜种子次生休眠特性是油菜产区自生苗长期留存并持续危害的主要原因,也是转基因油菜环境安全评估的重要性状.为探讨该性状的分子生态学特征,本研究以强次生休眠油菜品种的成熟种子为材料,对次生休眠前种子(CK)和次生休眠后种子(SD)的转录组进行了RNA-seq分析.2份样本测序所得的有效数据均超过了4 Gb,并从头拼接出序列长度?100 bp的转录本314261个,其中29740个转录本的序列长度?500 bp.根据功能注释信息,在?500 bp的长序列转录本中有1641个成员被分类到24种COG类群,有16515个成员被GO分类到2648个功能节点.在P?0.001显著性水平和2倍以上RPKM变化条件下,鉴别出452个代表性的长序列差异表达转录本,其中343个成员有序列高度相似的拟南芥同源基因对应.数据显示,绝大多数ABA,GA合成代谢和信号转导基因能从休眠种子转录组中找到同源转录本,但它们的表达水平在样本间多无显著差异.综合GO富集、KEGG富集以及种子休眠调控基因同源转录本的差异表达信息,脂肪酸代谢信号有可能参与到油菜种子次生休眠的诱导发生.本研究结果对于认识油菜自生苗发生规律和评估转基因油菜环境安全性具有重要意义.  相似文献   

15.
线粒体、溶酶体、内质网等多种细胞器组成的细胞内膜系统高效支撑了机体的正常生理活动.若将单个细胞视作浩瀚宇宙,各细胞器就是宇宙星空中的点点繁星.如果要解开细胞器在重要细胞活动规律中的深邃奥秘,就需要深入解析细胞器的组分构成及其作用模式.其中,"生命暗物质"长非编码核糖核酸(LncRNA),对细胞稳态和疾病发生发挥了重要的调控作用,而对其作为细胞器组分的分布规律并参与细胞调控的研究尚少.  相似文献   

16.
《科学通报》2021,66(24):3123-3140
microRNA(miRNA)是一类由内源基因编码的长度约22个核苷酸的单链非编码RNA分子,其通过剪切信使RNA或非编码RNA、沉默或激活转录、primary mi RNA(pri-miRNA)加工及mRNA翻译,调控几乎所有细胞增殖分化、个体生长发育及内环境稳态.大量研究已对miRNA的生物发生和调控机制进行了清晰阐述.然而,关于miRNA的转换机制,尤其是miRNA在特定条件下的快速变化,仍尚未解决.近年来研究发现,靶基因能以序列依赖性方式调控miRNA的生成和降解,表明miRNA和靶基因之间的调控不是单向的,而是相互调控.本文详细概述靶基因调控miRNA的最新进展,归纳二者相互作用的条件和机制,提出miRNA转换的研究方向,以期为深入研究机体内miRNA与靶基因的相互作用及开发miRNA靶向治疗药物提供理论基础.  相似文献   

17.
《科学通报》2021,66(22):2820-2831
植物糖代谢是植物科学研究领域的前沿和热点.果糖是植物糖代谢的重要参与者,果糖磷酸化则是果糖进入代谢途径的第一道生化反应.植物果糖激酶是果糖磷酸化的高效酶,调节细胞中的果糖浓度以及有机碳在细胞中的分配及流向,在调控植物生长发育、代谢和响应环境胁迫中发挥了非常重要的作用.近年来,有关植物果糖激酶的研究越来越多,其参与生理和代谢功能的重要性也逐渐凸显,但果糖激酶参与调控的生理代谢功能和分子机制仍有待进一步深入研究.为系统地总结植物果糖激酶的特点及其在生命活动中的重要功能,本文综述了果糖激酶在调控植物生长发育、响应逆境胁迫、光合作用及代谢通路中的重要作用,并提出了今后的研究趋势,以期为植物果糖激酶研究提供参考.  相似文献   

18.
方轲  梅皓  宋逸  王周义  戴振东 《科学通报》2022,(21):2535-2552
动物机器人利用动物固有的感知、运动、能量供应和神经系统,通过神经信息干预,实现对生物运动行为的控制.这类特殊的机器人在运动稳定性、灵活性、环境适应性和自身运动能量供应等方面保持了天然的优势,具有重要的应用价值;同时,该研究涉及动物运动神经网络及外部调控信息与固有运动神经信息的交互作用机制等重大理论问题,是神经科学和机器人交互领域的重要研究方向.该研究高度融合了动物智能和机器智能,涉及动物行为学、神经科学、微机电技术、力学和通信技术等,是多学科交叉融合的前沿领域.本文回顾动物运动神经系统与运动行为调控之间的关系,系统梳理不同动物机器人的运动调控方法及系统构成,总结活动在水、陆、空不同空间中典型动物运动行为调控的研究进展,归纳分析动物机器人研究在运动调控方法、微电极植入、微刺激系统、通信导航和能量供应等研究中面临的关键问题,并预测未来的发展趋势.  相似文献   

19.
根是植物进行水分和矿质营养吸收的重要器官.水分和矿质离子进入根的表皮,径向穿过外皮层、皮层、内皮层等结构到达中柱,在木质部中通过蒸腾作用向上运输,满足地上部分的需要.其中,内皮层结构是包围中央维管系统的最内层皮层细胞,仅由单层细胞构成,主要经历两个特殊的分化阶段,分别形成凯氏带和木栓质片层两种屏障结构,在控制植物水分吸收、营养摄取、抵御病原体入侵,以及响应胁迫环境等过程中发挥重要作用.本文就内皮层的发育、凯氏带和木栓质片层的结构与形成调控机制、内皮层在胁迫条件下的可塑性等方面进行综述,对内皮层参与植物响应非生物胁迫的研究进展展开讨论,并对未来的研究方向加以展望,为培育抗逆新物种提供了新思路.  相似文献   

20.
近年来,部分相干光束由于其独特的光学特性和丰富的物理内涵而受到广泛关注.部分相干光束在许多应用领域具有独特的优势,不同的应用对其光束特性具有不同的需求,因此需要对部分相干光束进行调控.本文介绍部分相干光束位相调控及应用基础研究进展,着重阐述携带涡旋位相以及扭曲位相部分相干光束理论模型、实验产生、光学特性以及相关应用基础.研究表明位相调控对部分相干光束传输特性起到重要调制作用,在光束整形、微粒俘获、大气激光通信、光学成像以及非线性光学等领域具有重要的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号