首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Knauth DC  Andersson BG  McCandliss SR  Moos HW 《Nature》2004,429(6992):636-638
The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry, together with millimetre-wavelength observations of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet or infrared (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds. Moreover, the N2 abundance does not explain the observed variations in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete.  相似文献   

2.
3.
Maret S  Bergin EA  Lada CJ 《Nature》2006,442(7101):425-427
Nitrogen is the fifth most abundant element in the Universe. In the interstellar medium, it has been thought to be mostly molecular (N2). However, N2 has no observable rotational or vibrational transitions, so its abundance in the interstellar medium remains poorly known. In comets, the N2 abundance is very low, while the elemental nitrogen abundance is deficient with respect to the solar value. Moreover, large nitrogen isotopic anomalies are observed in meteorites and interstellar dust particles. Here we report the N2H+ (and by inference the N2) abundance inside a cold dark molecular cloud. We find that only a small fraction of nitrogen in the gas phase is molecular, with most of it being atomic. Because the compositions of comets probably reflect those of dark clouds, this result explains the low N2 abundance in comets. We argue that the elemental nitrogen abundance deficiency in comets can be understood if the atomic oxygen abundance is lower than predicted by present chemical models. Furthermore, the lack of molecular nitrogen in molecular clouds explains the nitrogen anomalies in meteorites and interstellar dust particles, as nitrogen fractionation is enhanced if gaseous nitrogen is atomic.  相似文献   

4.
Blake GA  Qi C  Hogerheijde MR  Gurwell MA  Muhleman DO 《Nature》1999,398(6724):213-216
Comets are some of the most primitive bodies left over from the Solar System's early history. They may preserve both interstellar material and material from the proto-solar nebula, and so studies of their volatile components can provide clues about the evolution of gases and ices, as a collapsing molecular cloud transforms into a mature planetary system. Previous observations of emission from rotational transitions in molecules have averaged over large areas of the inner coma, and therefore include both molecules that sublimed from the nucleus and those that result from subsequent chemical processes in the coma Here we present high-resolution observations of emission from the molecules HNC, DCN and HDO associated with comet Hale-Bopp. Our data reveal arc-like structures-icy jets-offset from (but close to) the nucleus. The measured abundance ratios on 1-3" scales are substantially different from those on larger scales, and cannot be accounted for by models of chemical processes in the coma; they are, however, similar to the values observed in the cores of dense interstellar clouds and young stellar objects. We therefore propose that sublimation from millimetre-sized icy grains ejected from the nucleus provides access to relatively unaltered volatiles. The D/H ratios inferred from our data suggest that, by mass, Hale-Bopp (and by inference the outer regions of the early solar nebula) consists of > or =15-40% of largely unprocessed interstellar material.  相似文献   

5.
L B Knee  C M Brunt 《Nature》2001,412(6844):308-310
A large fraction of the mass of the interstellar medium in our Galaxy is in the form of warm (103-104 K) and cool (50-100 K) atomic hydrogen (H i) gas. Cold (10-30 K) regions are thought to be dominated by dense clouds of molecular hydrogen. Cold H i is difficult to observe, and therefore our knowledge of its abundance and distribution in the interstellar medium is poor. The few known clouds of cold H i are much smaller in size and mass than typical molecular clouds. Here we report the discovery that the H i supershell GSH139-03-69 is very cold (10 K). It is about 2 kiloparsecs in size and as massive as the largest molecular complexes. The existence of such an immense structure composed of cold atomic hydrogen in the interstellar medium runs counter to the prevailing view that cold gas resides almost exclusively in clouds dominated by molecular hydrogen.  相似文献   

6.
Li HB  Henning T 《Nature》2011,479(7374):499-501
The formation of molecular clouds, which serve as stellar nurseries in galaxies, is poorly understood. A class of cloud formation models suggests that a large-scale galactic magnetic field is irrelevant at the scale of individual clouds, because the turbulence and rotation of a cloud may randomize the orientation of its magnetic field. Alternatively, galactic fields could be strong enough to impose their direction upon individual clouds, thereby regulating cloud accumulation and fragmentation, and affecting the rate and efficiency of star formation. Our location in the disk of the Galaxy makes an assessment of the situation difficult. Here we report observations of the magnetic field orientation of six giant molecular cloud complexes in the nearby, almost face-on, galaxy M33. The fields are aligned with the spiral arms, suggesting that the large-scale field in M33 anchors the clouds.  相似文献   

7.
Matthews HE  Irvine WM  Friberg P  Brown RD  Godfrey PD 《Nature》1984,310(5973):125-126
The cold dark interstellar Taurus Molecular Cloud One (TMC-1) is a rich source of acetylenic and polyacetylenic molecular species. As well as linear closed-shell molecules (H(C triple bond C)nCN) and symmetric rotors (CH3C triple bond CH, CH3C triple bond CCN), several radicals (C triple bond CH, C triple bond CCN, (C triple bond C2H) have also been identified, many of which had not been studied previously in the laboratory. Whether the observed abundances can be understood in terms of purely gas-phase ion-molecule chemical schemes, which produce reasonable agreement for the simplest polyatomic species, is unclear; alternative models involving the particulate interstellar grains as catalysts or sources have also been suggested. We now report the detection in TMC-1 of a new molecule, tricarbon monoxide (C3O), whose pure rotational spectrum has only very recently been studied in the laboratory. As C3O is the first known interstellar carbon chain molecule to contain oxygen, its existence places an important new constraint on chemical schemes for cold interstellar clouds. In fact, the observed abundance of tricarbon monoxide fits quite well into our model of galactochemistry.  相似文献   

8.
Krause O  Birkmann SM  Rieke GH  Lemke D  Klaas U  Hines DC  Gordon KD 《Nature》2004,432(7017):596-598
A large amount (about three solar masses) of cold (18 K) dust in the prototypical type II supernova remnant Cassiopeia A was recently reported. It was concluded that dust production in type II supernovae can explain how the large quantities (approximately 10(8) solar masses) of dust observed in the most distant quasars could have been produced within only 700 million years after the Big Bang. Foreground clouds of interstellar material, however, complicate the interpretation of the earlier submillimetre observations of Cas A. Here we report far-infrared and molecular line observations that demonstrate that most of the detected submillimetre emission originates from interstellar dust in a molecular cloud complex located in the line of sight between the Earth and Cas A, and is therefore not associated with the remnant. The argument that type II supernovae produce copious amounts of dust is not supported by the case of Cas A, which previously appeared to provide the best evidence for this possibility.  相似文献   

9.
The Milky Way is known to be an abundant source of gamma-ray photons, now determined to be mainly diffuse in nature and resulting from interstellar processes. In the soft gamma-ray domain, point sources are expected to dominate, but the lack of sensitive high-resolution observations did not allow for a clear estimate of the contribution from such sources. Even the best imaging experiment revealed only a few point sources, accounting for about 50% of the total Galactic flux. Theoretical studies were unable to explain the remaining intense diffuse emission. Investigating the origin of the soft gamma-rays is therefore necessary to determine the dominant particle acceleration processes and to gain insights into the physical and chemical equilibrium of the interstellar medium. Here we report observations in the soft gamma-ray domain that reveal numerous compact sources. We show that these sources account for the entirety of the Milky Way's emission in soft gamma-rays, leaving at most a minor role for diffuse processes.  相似文献   

10.
Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value.  相似文献   

11.
Rosenfeld D  Woodley WL 《Nature》2000,405(6785):440-442
In cirrus and orographic wave clouds, highly supercooled water has been observed in small quantities (less than 0.15 g m(-3)). This high degree of supercooling was attributed to the small droplet size and the lack of ice nuclei at the heights of these clouds. For deep convective clouds, which have much larger droplets near their tops and which take in aerosols from near the ground, no such measurements have hitherto been reported. However, satellite data suggest that highly supercooled water (down to -38 degrees C) frequently occurs in vigorous continental convective storms. Here we report in situ measurements in deep convective clouds from an aircraft, showing that most of the condensed water remains liquid down to -37.5 degrees C. The droplets reach a median volume diameter of 17 microm and amount to 1.8 gm(-3), one order of magnitude more than previously reported. At slightly colder temperatures only ice was found, suggesting homogeneous freezing. Because of the poor knowledge of mixed-phase cloud processes, the simulation of clouds using numerical models is difficult at present. Our observations will help to understand these cloud processes, such as rainfall, hail, and cloud electrification, together with their implications for the climate system.  相似文献   

12.
Solomon P  Vanden Bout P  Carilli C  Guelin M 《Nature》2003,426(6967):636-638
Observations of carbon monoxide emission in high-redshift (zeta > 2) galaxies indicate the presence of large amounts of molecular gas. Many of these galaxies contain an active galactic nucleus powered by accretion of gas onto a supermassive black hole, and a key question is whether their extremely high infrared luminosities result from the active galactic nucleus, from bursts of massive star formation (associated with the molecular gas), or both. In the Milky Way, high-mass stars form in the dense cores of interstellar molecular clouds, where gas densities are n(H2) > 10(5) cm(-3) (refs 1, 2). Recent surveys show that virtually all galactic sites of high-mass star formation have similarly high densities. The bulk of the cloud material traced by CO observations, however, is at a much lower density. For galaxies in the local Universe, the HCN molecule is an effective tracer of high-density molecular gas. Here we report observations of HCN emission from the infrared-luminous 'Cloverleaf' quasar (at a redshift zeta = 2.5579). The HCN line luminosity indicates the presence of 10 billion solar masses of very dense gas, an essential feature of an immense starburst, which contributes, together with the active galactic nucleus it harbours, to its high infrared luminosity.  相似文献   

13.
Primordial nucleosynthesis after the Big Bang can be constrained by the abundances of the light elements and isotopes 2H, 3He, 4He and 7Li (ref. 1). The standard theory of stellar evolution predicts that 3He is also produced by solar-type stars, so its abundance is of interest not only for cosmology, but also for understanding stellar evolution and the chemical evolution of the Galaxy. The 3He abundance in star-forming (H II) regions agrees with the present value for the local interstellar medium, but seems to be incompatible with the stellar production rates inferred from observations of planetary nebulae, which provide a direct test of stellar evolution theory. Here we develop our earlier observations, which, when combined with recent theoretical developments in our understanding of light-element synthesis and destruction in stars, allow us to determine an upper limit for the primordial abundance of 3He relative to hydrogen: 3He/H = (1.1 +/- 0.2) x 10(-5). The primordial density of all baryons determined from the 3He data is in excellent agreement with the densities calculated from other cosmological probes. The previous conflict is resolved because most solar-mass stars do not produce enough 3He to enrich the interstellar medium significantly.  相似文献   

14.
Models of the chemical evolution of the Milky Way suggest that the observed abundances of elements heavier than helium ('metals') require a continuous infall of gas with metallicity (metal abundance) about 0.1 times the solar value. An infall rate integrated over the entire disk of the Milky Way of approximately 1 solar mass per year can solve the 'G-dwarf problem'--the observational fact that the metallicities of most long-lived stars near the Sun lie in a relatively narrow range. This infall dilutes the enrichment arising from the production of heavy elements in stars, and thereby prevents the metallicity of the interstellar medium from increasing steadily with time. However, in other spiral galaxies, the low-metallicity gas needed to provide this infall has been observed only in associated dwarf galaxies and in the extreme outer disk of the Milky Way. In the distant Universe, low-metallicity hydrogen clouds (known as 'damped Ly alpha absorbers') are sometimes seen near galaxies. Here we report a metallicity of 0.09 times solar for a massive cloud that is falling into the disk of the Milky Way. The mass flow associated with this cloud represents an infall per unit area of about the theoretically expected rate, and approximately 0.1-0.2 times the amount required for the whole Galaxy.  相似文献   

15.
Much effort has been directed to analyses of organic compounds in carbonaceous chondrites because of their implications for organic chemical evolution and the origin of life. We have determined the isotopic composition of hydrogen, nitrogen and carbon in amino acid and monocarboxylic acid extracts from the Murchison meteorite. The unusually high D/H and 15N/14N ratios in the amino acid fraction (delta D = 1,370% after correction for isotope exchange; delta 15N = 90) are uniquely characteristic of known interstellar organic materials. The delta D value of the monocarboxylic acid fraction is lower (377%), but still consistent with an interstellar origin. These results confirm the extraterrestrial origin of both classes of compound, and provide the first evidence suggesting a direct relationship between the massive organo-synthesis occurring in interstellar clouds and the presence of pre-biotic compounds in primitive planetary bodies. The isotope data also bear on the historical problem of distinguishing indigenous material from terrestrial contaminants.  相似文献   

16.
The composition of ices in comets may reflect that of the molecular cloud in which the Sun formed, or it may show evidence of chemical processing in the pre-planetary accretion disk around the proto-Sun. As carbon monoxide (CO) is ubiquitous in molecular clouds, its abundance with respect to water could help to determine the degree to which pre-cometary material was processed, although variations in CO abundance may also be influenced by the distance from the Sun at which comets formed. Observations have not hitherto provided an unambiguous measure of CO in the cometary ice (native CO). Evidence for an extended source of CO associated with comet Halley was provided by the Giotto spacecraft, but alternative interpretations exist. Here we report observations of comet Hale-Bopp which show that about half of the CO in the comet comes directly from ice stored in the nucleus. The abundance of this CO with respect to water (12 per cent) is smaller than in quiescent regions of molecular clouds, but is consistent with that measured in proto-stellar envelopes, suggesting that the ices underwent some processing before their inclusion into Hale-Bopp. The remaining CO arises in the coma, probably through thermal destruction of more complex molecules.  相似文献   

17.
The spectrum of any star viewed through a sufficient quantity of diffuse interstellar material reveals a number of absorption features collectively called 'diffuse interstellar bands' (DIBs). The first DIBs were reported about 90 years ago, and currently well over 500 are known. None of them has been convincingly identified with any specific element or molecule, although recent studies suggest that the DIB carriers are polyatomic molecules containing carbon. Most of the DIBs currently known are at visible and very near-infrared wavelengths, with only two previously known at wavelengths beyond one micrometre (10,000 ?ngstr?ms), the longer of which is at 1.318?micrometres (ref. 6). Here we report 13 diffuse interstellar bands in the 1.5-1.8 micrometre interval on high-extinction sightlines towards stars in the Galactic Centre. We argue that they originate almost entirely in the Galactic Centre region, a considerably warmer and harsher environment than where DIBs have been observed previously. The relative strengths of these DIBs towards the Galactic Centre and the Cygnus OB2 diffuse cloud are consistent with their strengths scaling mainly with the extinction by diffuse material.  相似文献   

18.
The Galactic Centre is the most active and heavily processed region of the Milky Way, so it can be used as a stringent test for the abundance of deuterium (a sensitive indicator of conditions in the first 1,000 seconds in the life of the Universe). As deuterium is destroyed in stellar interiors, chemical evolution models predict that its Galactic Centre abundance relative to hydrogen is D/H = 5 x 10(-12), unless there is a continuous source of deuterium from relatively primordial (low-metallicity) gas. Here we report the detection of deuterium (in the molecule DCN) in a molecular cloud only 10 parsecs from the Galactic Centre. Our data, when combined with a model of molecular abundances, indicate that D/H = (1.7 +/- 0.3) x 10(-6), five orders of magnitude larger than the predictions of evolutionary models with no continuous source of deuterium. The most probable explanation is recent infall of relatively unprocessed metal-poor gas into the Galactic Centre (at the rate inferred by Wakker). Our measured D/H is nine times less than the local interstellar value, and the lowest D/H observed in the Galaxy. We conclude that the observed Galactic Centre deuterium is cosmological, with an abundance reduced by stellar processing and mixing, and that there is no significant Galactic source of deuterium.  相似文献   

19.
介绍分子天文学及其在天文研究中的重要作用;综述近年来在分子云大尺度分布、分子云与恒星形成、拱星包层和恒星演化晚期、天体脉泽等方面的主要成果和进展;讨论了分子天体化学发展的情况及其重要意义;并提出对今后的发展趋势及主要研究课题的展望。  相似文献   

20.
Protons with energies up to approximately 10(15) eV are the main component of cosmic rays, but evidence for the specific locations where they could have been accelerated to these energies has been lacking. Electrons are known to be accelerated to cosmic-ray energies in supernova remnants, and the shock waves associated with such remnants, when they hit the surrounding interstellar medium, could also provide the energy to accelerate protons. The signature of such a process would be the decay of pions (pi(0)), which are generated when the protons collide with atoms and molecules in an interstellar cloud: pion decay results in gamma-rays with a particular spectral-energy distribution. Here we report the observation of cascade showers of optical photons resulting from gamma-rays at energies of approximately 10(12) eV hitting Earth's upper atmosphere, in the direction of the supernova remnant RX J1713.7-3946. The spectrum is a good match to that predicted by pion decay, and cannot be explained by other mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号