首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究原煤和氧化煤的低温氧化特性,以潘集矿煤样为研究对象,将原煤在90℃空气环境中恒温氧化150 min制备氧化煤样。采用程序升温实验装置测定了170℃以下原煤和氧化煤低温氧化阶段不同温度下的CO浓度,并基于CO浓度分阶段计算了原煤和氧化煤的表观活化能。此外,通过电子自旋共振设备测定了180℃以下原煤和氧化煤低温氧化过程中的自由基浓度。结果表明:原煤和氧化煤的CO浓度和表观活化能均随着温度的升高而增大,且表现出明显的阶段性特征;原煤和氧化煤的CO浓度和表观活化能在50~60℃范围内产生交叉;50℃以下,氧化煤的CO浓度大于原煤,表观活化能小于原煤;超过60℃,氧化煤的CO浓度小于原煤,表观活化能大于原煤。原煤的自由基浓度随着温度的升高而增大,氧化煤的自由基浓度随着温度的升高先降低后升高;相同温度下,氧化煤的自由基浓度大于原煤,但其自由基浓度的变化速率小于原煤。  相似文献   

2.
由于目前煤自燃倾向性鉴定方法的局限性,本文尝试引入差分扫描量热法(DSC),对低温阶段煤的氧化特性进行研究。通过对不同煤样不同粒径下的DSC实验,并根据DSC动力学法中的Kissinger法对煤低温氧化的表观活化能进行计算,发现煤的粒径越小,表观活化能越小,则自燃倾向性越大。同时,通过DSC动力学法得到的煤低温氧化活化能与实际自然发火周期对比,其呈现的趋势一致。因此基于DSC动力法对煤自燃倾向性的研究有一定的理论与实际意义。  相似文献   

3.
为了研究经过初次氧化后,煤在不同温度阶段的自燃特性变化规律,采用程序升温实验,对4组煤样(原煤样和3组预氧化煤样)从40~180℃的氧化过程进行测试,计算、分析煤样的耗氧速度以及活化能,找出煤样的耗氧速度以及活化能在整个升温过程中的突变点,据此划分出3个阶段,得出煤二次氧化过程中不同温度阶段的自燃特性.结果表明:任何一个阶段经过预氧化后的煤样的耗氧速度的变化率均大于原煤样,在第2和第3阶段预氧化后的煤样的活化能均小于原煤样,耗氧速度变化率的变化规律与活化能的变化规律在所对应的阶段是相一致的.无论从耗氧速度的变化率去分析还是从活化能角度分析都可以得出在第2和第3阶段中自燃倾向性最大的分别为预氧化120和90℃的煤样.  相似文献   

4.
煤自然发火严重制约矿井安全生产。为实现煤自然发火危险性精准预测预报,采用程序升温试验系统测试分析了沙曲一号煤矿不同粒径煤样各种气体产物及其浓度变化规律,进一步引入随机森林集成学习方法建立了煤自然发火危险性分级预警模型,并通过大佛寺煤矿自然发火试验进行了验证分析。结果表明:粒径越小,煤氧接触面积越大,煤氧反应越激烈,气体产物浓度越大;C2H6气体属于煤体赋存气体,在试验初始阶段就出现了,但C2H4气体在温度升高至120℃左右才出现,是煤氧化裂解的产物,可以作为沙曲一号煤矿自然发火指标气体;基于随机森林建立的煤自然发火危险性分级预警模型训练样本预测准确率达到100%,在默认参数条件下,测试样本预测准确率高达96.7%,通过自然发火试验数据验证分析得到测试集预测准确率为98.9%,变量重要度评估结果为CO和C2H4气体对煤自然发火危险性影响最大,这与现场实际情况吻合。随机森林用于处理煤自然发火危险性与气体产物之间的复杂非线性关系十分理想,适合于煤自然发火危险性预...  相似文献   

5.
对3种不同自燃倾向性煤样进行低温氧化实验,利用CO体积分数与煤体温度间变化的计算模型,求解出活化能和煤氧化过程发生转变的特征温度,同时结合热重-差示扫描量热(TGDSC,theremogravimetric analysis-differential scanning calorimetry)实验结果,分析了不同自燃性煤氧化特性和活化能的低温表征规律。结果表明:1)低温氧化阶段,CO生成量、耗氧量和耗氧速率随着煤自燃倾向性增强而增大;不同煤样在实验过程中出现同样的CO生成量和耗氧速率急剧上升的温度拐点,且煤的自燃性越强,该拐点温度越低,同时CO体积分数的变化具有明显的阶段性。2)不同自燃性煤氧化阶段活化能变化规律存在显著差异,当各煤样的温度到达活性温度时,活化能快速减少,且活化能变化点对应于煤氧化过程发生转变的特征温度点。3)根据煤特征温度和活化能的变化规律,把煤低温氧化进程分为4个阶段,分别为表面氧化、氧化自热、加速氧化和深度氧化。  相似文献   

6.
为分析煤样的自燃发生发展过程以及实验煤样的自燃机理,研究从不同自燃倾向性煤样的氧化机理入手,选取具有不同自燃倾向性的阜生、五阳煤样进行实验,通过热重实验对比分析不同自燃倾向性煤样的特征温度、热失重速率及阶段质量变化率参数,并结合红外光谱实验对低温氧化过程中主要官能团的分布特征及随温度的变化规律进行对比分析。结果表明:不同自燃倾向性煤样的煤氧反应差别主要体现在热重实验的T2 -T3和T4 -T5两个阶段;硫对煤氧反应的影响主要体现为常温下发生氧化释放热,促进小分子化合物的氧化裂解,进而引发自燃;煤自燃特性与原始煤样中官能团的分布特征关系较小,主要由煤分子结构中的侧链体系(桥键、侧链基团及活性官能团)所决定,侧链体系作为直接与芳环骨架连接的煤分子结构,本身具有较高的化学活性,在氧化分解的过程中降低了煤分子结构的稳定性。  相似文献   

7.
为了研究在不同预氧化温度下煤样热物性参数的变化规律,选取长焰煤进行热物性实验。首先通过程序升温氧化法对煤样进行预氧化处理,分别氧化升温至80,110,140,170,200℃.然后使用激光导热仪LFA 457装置测定在30~300℃温度范围内的煤样热物性参数,研究预氧化处理后煤样的热物性参数随温度的变化趋势,并分析预氧化处理后的煤样对温度的敏感性。结果表明:在30~300℃范围内,随着温度的升高,煤样的热扩散系数呈现出逐渐降低的趋势,而煤样的导热系数和比热容呈现出逐渐升高的趋势,并且温度越高,煤样的热扩散系数的降低趋势以及比热容和导热系数的增大趋势越来越平稳。在相同温度下,预氧化处理煤样的热物性参数均高于原煤样。从敏感性分析可知,比热容对温度最敏感,而导热系数的敏感性最低,且当温度超过120℃时,煤样的预氧化温度越高,其热物性参数对温度的敏感性越低。实验结果对于了解煤层自燃和火灾蔓延过程中的传热具有指导意义,为煤自燃的防治提供理论依据和技术指导。  相似文献   

8.
根据煤氧复合理论,煤自燃是由于煤和氧接触发生氧化反应放出热量引起煤温度升高达到煤的自燃点而发生的。故煤的氧化放热特性反应了煤自燃能力的强弱。为测定煤的放热能力大小本文设计了煤的氧化升温实验,并采集薛村煤矿2#煤层、4#煤层、6#煤层三组煤样进行了实验研究。实验中对低温条件下不同温度时煤样对氧气的消耗速率、CO的生成速率及CO2的生成速率进行了测定,并根据其测量值对煤样的放热强度进行了计算,绘制放热强度与温度关系的散点图。然后运用回归分析方法,分析了煤氧化升温过程中放热强度与温度的关系。在低温阶段临界温度前后煤的放热强度与温度都呈线性关系。在临界温度之前煤的放热强度较低,而达到临界温度后煤的放热强度会急剧增加。研究结果对煤自然发火的防治具有重要意义。  相似文献   

9.
为探究煤自燃过程的反应特征与预测煤自燃临界温度,对5种煤样进行了绝热氧化实验,采用煤样活化能指标在实验不同时间段的变化情况来表征煤低温氧化内在特征。然后运用线性回归性分析模型中线性显著性检验来确定临界温度点Tc。结果表明:实验初期煤样活化能波动范围极大,随着温度升高活化能趋于稳定,在实验后期,各煤样求得的活化能均处于55~70kJ/mol范围内,反映了煤低温氧化反应是由不稳定逐步过渡到相对稳定的过程;Tc与宏观升温速率突变范围相符合,验证了模型的准确性;同时Tc与实验中自热温度达到160℃所需时间t0自发呈线性关系,因此可以用绝热氧化装置测得t0来预测煤自燃临界点。研究成果可以对矿区防灭火和煤炭储运管理工作提供借鉴。  相似文献   

10.
采集东荣二矿17#煤层煤样,利用“XKⅢ型“煤低温自然发火实验台进行测试,模拟现场散热情况、漏风状况及浮煤厚度,依靠煤自身氧化放热升温,得出随煤温升高的耗氧速度、CO产生率、CO2产生率、放热强度、煤自燃极限参数等的变化规律,研究煤的低温氧化放热特性,预测煤的临界温度和干裂温度、实验最短自然发火期及自燃倾向性.实验表明:煤样起始温度为20℃时,最短自然发火期为46 d;临界温度为60~75℃、干裂温度为90~110℃、浮煤厚度小于0.7 m、下限氧浓度在60℃左右,浮煤不自燃.  相似文献   

11.
参比氧化法研究煤低温氧化特性   总被引:1,自引:0,他引:1  
为了研究煤低温氧化过程的热释放特性,提出了一种新的参比氧化实验方法,即对氧化煤样罐通入氧气使煤氧化,而对参比煤样罐通入氮气作为比较;同时提出了参比氧化法的理论模型,并根据该模型推导出煤低温氧化产热速率的计算方法。对4种不同变质程度的煤样进行了实验,得出了参比氧化法过程中氧化煤样温度,参比煤样温度,氧化与参比煤样温度差和煤的低温氧化过程产热速率,并对煤的自燃倾向性进行了比较。在实验基础上,提出煤在实际自燃过程具有比较明显的四个阶段的理论。  相似文献   

12.
采用热重分析法和统计分析方法研究了原煤及加入不同添加剂后煤粉的燃烧效果.加入质量分数为2%的 MnO2、CaO 和 CeO2可将原煤的活化能由98.07分别降至73.73、78.50和76.45 kJ·mol?1,原煤的燃烧放热峰温度也随之降低,由534.2分别降至482.7、489.4和484.9℃,但对氧化放热峰温度影响不明显,两者作用结果可将原煤氧化峰与燃烧峰对应温度差减小约30℃.添加剂对煤粉燃烧活化能和燃烧峰温度的影响规律符合玻尔兹曼方程拟合的函数关系,燃烧放热峰对应温度降低,活化能也减小,可通过煤样差热分析曲线中燃烧峰对应温度值粗略估计煤样的活化能.  相似文献   

13.
采用热重分析法和统计分析方法研究了原煤及加入不同添加剂后煤粉的燃烧效果.加入质量分数为2%的MnO2、CaO和CeO2可将原煤的活化能由98.07分别降至73.73、78.50和76.45 kJ·mol-1,原煤的燃烧放热峰温度也随之降低,由534.2分别降至482.7、489.4和484.9℃,但对氧化放热峰温度影响不明显,两者作用结果可将原煤氧化峰与燃烧峰对应温度差减小约30℃.添加剂对煤粉燃烧活化能和燃烧峰温度的影响规律符合玻尔兹曼方程拟合的函数关系,燃烧放热峰对应温度降低,活化能也减小,可通过煤样差热分析曲线中燃烧峰对应温度值粗略估计煤样的活化能.  相似文献   

14.
为了深入研究CO2对煤低温氧化反应的影响,利用程序升温油浴实验装置,研究在不同CO2浓度下煤样的自燃特性。采集南屯矿煤样,破碎并筛分出混合平均粒径为4.18 mm的煤样,向试验管煤样中通入不同配比的混合气体,实验控制升温速度为0.3℃/min,供气量为190 mL/min.测定在6种不同浓度CO2气氛下的煤样低温氧化特性,实验结果表明:CO2浓度越高,煤样耗氧速率越小,CO产生率降低。在起始阶耗氧速率相差不大,煤氧复合作用以物理吸附和化学吸附为主,后期阶段以化学反应为主,变化明显。相比于空气气氛下,CO2气氛下煤样活化能有所提高,在40~100℃的温度范围内煤氧作用的活化能值由17.85 kJ/mol升高至22.71 kJ/mol,氧化反应速率降低,表明CO2的加入降低了煤的氧化反应速率,抑制了煤的氧化反应。  相似文献   

15.
为确定煤自燃及由火灾引发的瓦斯爆炸数值模拟所需的基础参数,利用热重实验研究了4种不同变质程度煤样放热量、质量变化规律,确定了4种煤样低温氧化阶段温度范围.根据热重实验确定的低温氧化阶段,利用管式炉程序升温和色谱仪进行生成气体成分分析实验,得到不同温度下管式炉出口O2、CO、CO2气体体积分数,计算得出了耗氧速率、CO与CO2生成速率、放热强度随温度变化规律.研究结果表明:变质程度越高的煤,着火温度越高,低温氧化阶段温度范围越大;相同温度下,变质程度越低的煤,耗氧速率、CO与CO2生成速率、放热强度越大,越易自燃;CO生成速率大于CO2生成速率;耗氧速率、CO与CO2生成速率、放热强度随温度增加呈指数关系增加;随着耗氧速率增加放热强度呈线性关系增加.该研究可为煤自燃过程模拟计算与火区瓦斯爆炸危险性预测提供关键性基础参数.  相似文献   

16.
为了考察程序升温实验条件下煤自燃阶段特征参数的变化情况,分别对常村贫煤、兴县气肥煤、唐山1/3焦煤等煤样的进行程序升温实验,得到3煤样在低温自燃阶段其指标气体的析出变化曲线。实验结果表明:在同一受热温度,低变质程度的气肥煤其CO,C2H4等指标气体的析出浓度比高变质程度的焦煤和贫煤高,而C2H6则相反;CO特征气体在受热初期并不是所有煤样都存在,且C2H4,C2H6的释放规律与煤质无关;通过对低温段内煤自燃的反应能级及活化能值的计算,得到煤低温氧化段内的反应能级及活化能值,并找出了阶段特征温度点。煤反应能级和活化能的大小反映了煤在不同温度段内其自身氧化能力的强弱,特征温度点温度则可用来判断煤自燃所处的燃烧阶段。  相似文献   

17.
煤在低温自燃发火过程中的热效应是多种多样的,但主要是煤与氧的化学反应热.通过装煤850kg的大型煤低温自燃发火实验台模拟煤自燃过程,根据实验台测定的温度场变化和传热学理论,推导出计算不同温度时松散煤体低温氧化放热强度的热平衡测算法.通过对不同煤样的自燃发火测试,利用该方法推算出不同的煤在相同温度下的放热强度,为煤自燃特性的定量分析及自燃发火预测提供了理论依据.图1,表1,参8.  相似文献   

18.
为研究不同种类绝缘油在热故障下油中溶解气体差异,对山茶籽绝缘油、FR3绝缘油、25#矿物绝缘油及油纸绝缘体系进行了90~250℃及300~800℃模拟变压器热故障试验,使用色谱法分析了热故障下油中溶解气体,得到相应气体组分、百分含量同热故障温度的对应关系。实验表明,热故障下山茶籽绝缘油的主要溶解气体为H2与C2H6,FR3绝缘油为C2H6;矿物绝缘油低温(<300℃)热故障下为H2与CH4,中、高温(≥300℃)热故障下为CH4与C2H4。植物绝缘油与矿物绝缘油热故障特征气体的差异表明,在变压器故障诊断中应根据绝缘油类型建立适用的油中溶解气体分析方法。  相似文献   

19.
为了掌握煤经多次氧化的自燃特性指标参数,对气肥煤、1/3焦煤、贫煤和无烟煤4种不同变质程度煤的煤样进行预处理,即将原煤样经过升温氧化后利用氮气冷却至常温,得其氧化煤样。采用煤质分析实验、物理吸附实验和煤自燃程序升温实验,对两次氧化过程中的耗氧速率、放热强度、CO产生率和特征温度等自燃特性参数进行对比实验研究。结果表明,2次程序升温过程中,煤样的自燃特性参数都随煤温呈指数变化规律。氧化煤样的耗氧速率、放热强度和CO产生率均表现出在氧化反应前期大于原煤样,氧化反应后期小于原煤样;自然发火的特征温度低于原煤样,说明氧化煤样更容易发生自燃,危险性较大。  相似文献   

20.
为了研究煤中低分子化合物对煤低温氧化规律的影响,选用四氢呋喃溶剂对信湖3煤进行微波辅助抽提,通过低温氧化实验,测试了煤样抽提前后煤体耗氧特性及气体产物释放规律。结果表明,抽提前后煤样在低温氧化过程中产生的气体主要有CO、CO_2等气体氧化产物和CH_4、C_2H_4、C_2H_6、C_3H_8等烷烃类气体,煤样抽提后这些气体的产生量均有不同程度的降低;抽提后残煤的耗氧量和耗氧速率明显要低于抽提前原煤。可见,煤中低分子化合物的存在对信湖3煤的自燃有一定的促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号