首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Voltage-gated calcium channels are important mediators of calcium influx into electrically excitable cells. The amount of calcium entering through this family of channel proteins is not only determined by the functional properties of channels embedded in the plasma membrane but also by the numbers of channels that are expressed at the cell surface. The trafficking of channels is controlled by numerous processes, including co-assembly with ancillary calcium channel subunits, ubiquitin ligases, and interactions with other membrane proteins such as G protein coupled receptors. Here we provide an overview about the current state of knowledge of calcium channel trafficking to the cell membrane, and of the mechanisms regulating the stability and internalization of this important ion channel family.  相似文献   

2.
Primary cilium is a rod-like plasma membrane protrusion that plays important roles in sensing the cellular environment and initiating corresponding signaling pathways. The sensory functions of the cilium critically depend on the unique enrichment of ciliary residents, which is maintained by the ciliary diffusion barrier. It is still unclear how ciliary cargoes specifically enter the diffusion barrier and accumulate within the cilium. In this review, the organization and trafficking mechanism of the cilium are compared to those of the nucleus, which are much better understood at the moment. Though the cilium differs significantly from the nucleus in terms of molecular and cellular functions, analogous themes and principles in the membrane organization and cargo trafficking are notable between them. Therefore, knowledge in the nuclear trafficking can likely shed light on our understanding of the ciliary trafficking. Here, with a focus on membrane cargoes in mammalian cells, we briefly review various ciliary trafficking pathways from the Golgi to the periciliary membrane. Models for the subsequent import translocation across the diffusion barrier and the enrichment of cargoes within the ciliary membrane are discussed in detail. Based on recent discoveries, we propose a Rab–importin-based model in an attempt to accommodate various observations on ciliary targeting.  相似文献   

3.
Olfactory receptors typically exhibit poor plasma membrane localization and functionality when heterologously expressed in most cell types. It has therefore proven difficult to effectively study olfactory receptor pharmacology and signaling mechanisms using traditional cell culture systems. Over the past few years, a variety of distinct proteins have been reported to interact with olfactory receptors and facilitate olfactory receptor trafficking to the plasma membrane in heterologous cells. Advances in this area have shed significant light on the fundamental factors governing the cell-specific control of olfactory receptor trafficking.  相似文献   

4.
The plasma membrane of epithelial cells and hepatocytes is divided into two separate membrane compartments, the apical and the basolateral domain. This polarity is maintained by intracellular machinery that directs newly synthesized material into the correct target membrane. Apical protein sorting and trafficking require specific signals and different intracellular routes to the cell surface. Some of them depend on the integrity of sphingolipid/cholesterol-enriched membrane microdomains named ‘lipid rafts’, others use separate transport platforms. Certain characteristics of the heterogeneous population of apical sorting signals are described in this review and cellular factors associated with sorting and transport mechanisms are discussed. Received 5 May 2006; received after revision 12 June 2006; accepted 11 July 2006  相似文献   

5.
P-glycoprotein (P-gp) is an active membrane transporter responsible for cell detoxification against numerous amphiphilic compounds, leading to multidrug resistance in tumor cells. It displays entangled connections with its membrane environment since it recognizes its substrates within the cytosolic leaflet and it also translocates some endogenous lipids to the exoplasmic leaflet. Regarding its relationships with membrane microdomains, ‘lipid rafts’, a literature analysis concludes that (i) P-gp also exists in rafts and non-raft membrane domains, depending on the cell considered, the experimental conditions and the method used to test it; (ii) cholesterol has a positive influence on P-gp function, and this may be a direct effect of the free cholesterol present in membrane or an indirect effect mediated by the cholesterol-enriched microdomains; (iii) when present in rafts, P-gp interacts with protein partners regulating its activity; (iv) P-gp is a lipid translocase that handles the raft-constituting lipids with particular efficiency, and it also influences membrane trafficking in the cell. Received 18 November 2005; received after revision 23 December 2005; accepted 12 January 2006  相似文献   

6.
Hap1 was originally identified as a neuronal protein that interacts with huntingtin, the Huntington’s disease (HD) protein. Later studies revealed that Hap1 participates in intracellular trafficking in neuronal cells and that this trafficking function can be adversely affected by mutant huntingtin. Hap1 is also present in pancreatic β-cells and other endocrine cells; however, the role of Hap1 in these endocrine cells remains unknown. Using the Cre-loxP system, we generated conditional Hap1 knockout mice to selectively deplete the expression of Hap1 in mouse pancreatic β-cells. Mutant mice with Hap1 deficiency in pancreatic β-cells had impaired glucose tolerance and decreased insulin release in response to intraperitoneally injected glucose. Using cultured pancreatic β-cell lines and isolated mouse pancreatic islets, we confirmed that decreasing Hap1 could reduce glucose-mediated insulin release. Electron microscopy suggested that there was a reduced number of insulin-containing vesicles docked at the plasma membrane of pancreatic islets in Hap1 mutant mice following intraperitoneal glucose injection. Glucose treatment decreased the phosphorylation of Hap1A in cultured β-cells and in mouse pancreatic tissues. Moreover, this glucose treatment increased Hap1’s association with kinesin light chain and dynactin p150, both of which are involved in microtubule-dependent trafficking. These studies suggest that Hap1 is important for insulin release from β-cells via dephosphorylation that can regulate its intracellular trafficking function.  相似文献   

7.
Defects in membrane trafficking and degradation are hallmarks of most, and maybe all, neurodegenerative disorders. Such defects typically result in the accumulation of undegraded proteins due to aberrant endosomal sorting, lysosomal degradation, or autophagy. The genetic or environmental cause of a specific disease may directly affect these membrane trafficking processes. Alternatively, changes in intracellular sorting and degradation can occur as cellular responses of degenerating neurons to unrelated primary defects such as insoluble protein aggregates or other neurotoxic insults. Importantly, altered membrane trafficking may contribute to the pathogenesis or indeed protect the neuron. The observation of dramatic changes to membrane trafficking thus comes with the challenging need to distinguish pathological from protective alterations. Here, we will review our current knowledge about the protective and destructive roles of membrane trafficking in neuronal maintenance and degeneration. In particular, we will first focus on the question of what type of membrane trafficking keeps healthy neurons alive in the first place. Next, we will discuss what alterations of membrane trafficking are known to occur in Alzheimer’s disease and other tauopathies, Parkinson’s disease, polyQ diseases, peripheral neuropathies, and lysosomal storage disorders. Combining the maintenance and degeneration viewpoints may yield insight into how to distinguish when membrane trafficking functions protectively or contributes to degeneration.  相似文献   

8.
Secretion is a fundamental biological activity of all eukaryotic cells by which they release certain substances in the extracellular space. It is considered a specialized mode of membrane trafficking that is achieved by docking and fusion of secretory vesicles to the plasma membrane (i.e., exocytosis). Secretory vesicle traffic is thought to be regulated by a family of Rab small GTPases, which are regulators of membrane traffic that are common to all eukaryotic cells. Classically, mammalian Rab3 subfamily members were thought to be critical regulators of secretory vesicle exocytosis in neurons and endocrine cells, but recent genetic and proteomic studies indicate that Rab3 is not the sole Rab isoform that regulates secretory vesicle traffic. Rather, additional Rab isoforms, especially Rab27 subfamily members, are required for this process. In this article I review the current literature on the function of Rab isoforms and their effectors in regulated secretory vesicle traffic.  相似文献   

9.
Intracellular trafficking of AMPA receptors in synaptic plasticity   总被引:6,自引:0,他引:6  
Modification of ligand-gated receptor function at the postsynaptic domain is one of the most important mechanisms by which the efficacy of synaptic transmission in the nervous system is regulated. Traditionally, these types of modifications have been thought to be achieved mainly by altering the channel-gating properties or conductance of the receptors. However, recent evidence suggests that AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxayolepropionic acid)-type ligand-gated glutamate receptors are continuously recycling between the plasma membrane and the intracellular compartments via vesicle-mediated plasma membrane insertion and clathrin-dependent endocytosis. Regulation of either receptor insertion or endocytosis results in a rapid change in the number of these receptors expressed on the plasma membrane surface and in the receptor-mediated responses, thereby playing an important role in mediating certain forms of synaptic plasticity. Thus, controlling the number of postsynaptic receptors by regulating the intracellular trafficking and plasma membrane expression of the postsynaptic receptors may be a common and important mechanism of synaptic plasticity in the mammalian central nervous system.  相似文献   

10.
Proteins of the developing enamel matrix include amelogenin, ameloblastin and enamelin. Of these three proteins amelogenin predominates. Protein-protein interactions are likely to occur at the ameloblast Tomes’ processes between membrane-bound proteins and secreted enamel matrix proteins. Such protein-protein interactions could be associated with cell signaling or endocytosis. CD63 and Lamp1 are ubiquitously expressed, are lysosomal integral membrane proteins, and localize to the plasma membrane. CD63 and Lamp1 interact with amelogenin in vitro. In this study our objective was to study the molecular events of intercellular trafficking of an exogenous source of amelogenin, and related this movement to the spatiotemporal expression of CD63 and Lamp1 using various cell lineages. Exogenously added amelogenin moves rapidly into the cell into established Lamp1-positive vesicles that subsequently localize to the perinuclear region. These data indicate a possible mechanism by which amelogenin, or degraded amelogenin peptides, are removed from the extracellular matrix during enamel formation and maturation. Received 27 September 2006; received after revision 24 November 2006; accepted 5 December 2006  相似文献   

11.
Membrane trafficking is crucial in the homeostasis of the highly compartmentalized eukaryotic cells. This compartmentalization occurs both at the organelle level, with distinct organelles maintaining their identities while also intensely interchanging components, and at a sub-organelle level, with adjacent subdomains of the same organelle containing different sets of lipids and proteins.Acentral question in the field is thus how this compartmentalization is established and maintained despite the intense exchange of components and even physical continuities within the same organelle. The phosphorylated derivatives of phosphatidylinositol, known as the phosphoinositides, have emerged as key components in this context, both as regulators of membrane trafficking and as finely tuned spatial and temporal landmarks for organelle and sub-organelle domains. The central role of the phosphoinositides in cell homeostasis is highlighted by the severe consequences of the derangement of their metabolism caused by genetic deficiencies of the enzymes involved, and from the systematic hijacking of phosphoinositide metabolism that pathogens operate to promote their entry and/or survival in host cells. (Part of a Multi-author Review)  相似文献   

12.
In eukaryotic cells membrane compartments are connected through cargo-selective vesicle trafficking mediating the exchange of components between different organelles. This exchange is essential to maintain their structural integrity and specific composition. A fundamental regulatory step in vesicle formation is the activation of small ARF GTPases by exchanging their bound GDP for GTP, which is a prerequisite for ARF-mediated effector recruitment. Activation of ARFs is catalyzed by the characteristic SEC7 domain of guanine nucleotide exchange factors (ARF-GEFs), which are classified according to their additional protein domains.The only group of ARF-GEFs conserved in mammals, yeast and plants are the large ARF-GEFs. This review summarizes recent findings on the function of large ARF-GEFs, and the use of the inhibitor Brefeldin A as a potent tool in understanding membrane trafficking. Furthermore we highlight common themes and apparent differences in large ARF-GEF function between eukaryotic kingdoms.  相似文献   

13.
The processing of amyloid precursor protein (APP) to the neurotoxic pro-aggregatory Aβ peptide is controlled by the mechanisms that govern the trafficking and localisation of APP. We hypothesised that genes involved in endosomal protein sorting could play an important role in regulating APP processing and, therefore, analysed ~ 40 novel endosome-to-Golgi retrieval genes previously identified in a genome-wide siRNA screen. We report that phospholipase D3 (PLD3), a type II membrane protein, functions in endosomal protein sorting and plays an important role in regulating APP processing. PLD3 co-localises with APP in endosomes and loss of PLD3 function results in reduced endosomal tubules, impaired trafficking of several membrane proteins and reduced association of sortilin-like 1 with APP.  相似文献   

14.
For many glycosyltransferases, the information that instructs Golgi localization is located within a relatively short sequence of amino acids in the N-termini of these proteins comprising: the cytoplasmic tail, the transmembrane spanning region, and the stem region (CTS). Also, one enzyme may be more reliant on a particular region in the CTS for its localization than another. The predominance of these integral membrane proteins in the Golgi has seen these enzymes become central players in the development of membrane trafficking models of transport within this organelle. It is now understood that the means by which the characteristic distributions of glycosyltransferases arise within the subcompartments of the Golgi is inextricably linked to the mechanisms that cells employ to direct the flow of proteins and lipids within this organelle.  相似文献   

15.
Genetic and molecular analysis of the synaptotagmin family   总被引:5,自引:0,他引:5  
Secretion is a fundamental cellular process used by all eukaryotes to insert proteins into the plasma membrane and transport signaling molecules and intravesicular proteins into the extracellular space. Secretion requires the fusion of two phospholipid bilayers within the cell, an energetically unfavorable process. A conserved repertoire of vesicle-trafficking proteins has evolved that function to overcome this energy barrier and temporally and spatially control membrane fusion within the cell. Within neurons, opening of synaptic calcium channels and subsequent calcium entry triggers synchronous synaptic vesicle exocytosis and neurotransmitter release into the synaptic cleft. After fusion, synaptic vesicles undergo endocytosis, are refilled with neurotransmitter, and return to the vesicle pool for further rounds of cycling. It is within this local synaptic trafficking pathway that the synaptotagmin family of calcium-binding synaptic vesicle proteins has been postulated to function. Here we review the current literature on the function of the synaptotagmin family and discuss the implications for synaptic transmission and membrane trafficking. Received 14 August 2000; received after revision 20 September 2000, accepted 14 October 2000  相似文献   

16.
Polarized traffic in epithelial cells depends on well-organized pathways that direct secretory cargo to the apical or basolateral plasma membrane. In MDCK cells, apical trafficking can be further divided into a lipid raft-dependent and a raft-independent route, which separate biosynthetic cargo in a post-Golgi endosomal compartment. We have now identified KIF5C as a kinesin motor for apical trafficking of both raft-associated sucrase isomaltase and raft-independent neurotrophin receptor. KIF5C was identified by mass spectrometry in vesicle enriched fractions and on immunoisolated post-Golgi vesicles carrying apical cargo. The amount of vesicle-associated KIF5C was highest on material isolated directly after trans-Golgi network release and declined thereafter. Altogether, our data suggest that KIF5C is involved in the passage of apical cargo molecules to a post-Golgi endosomal compartment, where further segregation into distinct vesicle populations proceeds.  相似文献   

17.
Matrix metalloproteinase-7 (MMP-7, matrilysin- 1) modulates crucial biological events by processing many epithelial cell surface-associated effectors. We addressed MMP-7 interaction with human epithelial cells and its resulting activity. In human endometrium, a model of controlled tissue remodeling, proMMP-7 was diffusely immunolocalized inside epithelial cells, whereas MMP-7 delineated their entire plasma membrane. Endometrial explants preferentially retained active MMP-7, but not proMMP-7. Endometrial epithelial cells and carcinoma cells from various tissues bound active MMP-7. Endometrial carcinoma-derived Ishikawa cells showed high affinity (KD of ~2.5 nM) and capacity (~260 000 sites per cell) for MMP-7. MMP-7 binding decreased by extracting membrane sterols or interfering with heparan sulfate proteoglycans, and was abrogated by tissue inhibitors of metalloproteinase-2 (TIMP-2) or synthetic MMP inhibitors. Bound MMP-7 not only remained fully active towards a macromolecular substrate but also became resistant to TIMP-2. We conclude that MMP-7-selective targeting to the plasma membrane of epithelial cells promotes its activity by conferring resistance to TIMP-2. A. Berton, C. Selvais: These authors contributed equally to this work. P. J. Courtoy, E. Marbaix, H. Emonard: These authors contributed equally to the supervision of this work. Received 20 September 2006; received after revision 30 November 2006; accepted 18 January 2007  相似文献   

18.
Presynaptic differentiation takes place over three interrelated acts involving the biogenesis and trafficking of molecular complexes of active zone material, the “trapping” or stabilization of active zone sites, and the subsequent development of mature synapses. Although the identities of proteins involved with establishing presynaptic specializations have been increasingly delineated, the exact functional mechanisms by which the active zone is assembled remain poorly understood. Here, we discuss a theoretical model for how the trapping stage of presynaptic differentiation might occur in developing neurons. We suggest that subsets of active zone proteins containing polyglutamine domains undergo concentration-dependent prion-like conversions as they accumulate at the plasma membrane. This conversion might serve to aggregate the proteins into a singular structure, which is then able to recruit scaffolding agents necessary for regulated synaptic transmission. A brief informatics analysis in support of this ‘Q’ assembly hypothesis—across commonly used models of synaptogenesis—is presented.  相似文献   

19.
The infectious agent in prion diseases consists of an aberrantly folded isoform of the cellular prion protein (PrPc), termed PrPSc, which accumulates in brains of affected individuals. Studies on prion-infected cultured cells indicate that cellular cholesterol homeostasis influences PrPSc propagation. Here, we demonstrate that the cellular PrPSc content decreases upon accumulation of cholesterol in late endosomes, as induced by NPC-1 knock-down or treatment with U18666A. PrPc trafficking, lipid raft association, and membrane turnover are not significantly altered by such treatments. Cellular PrPSc formation is not impaired, suggesting that PrPSc degradation is increased by intracellular cholesterol accumulation. Interestingly, PrPSc propagation in U18666A-treated cells was partially restored by overexpression of rab 9, which causes redistribution of cholesterol and possibly of PrPSc to the trans-Golgi network. Surprisingly, rab 9 overexpression itself reduced cellular PrPSc content, indicating that PrPSc production is highly sensitive to alterations in dynamics of vesicle trafficking.  相似文献   

20.
The protein kinase C (PKC) family of isoenzymes has been shown to regulate a variety of cellular processes, including receptor desensitization and internalization, and this has sparked interest in further delineation of the roles of specific isoforms of PKC in membrane trafficking and endocytosis. Recent studies have identified a novel translocation of PKC to a juxtanuclear compartment, the pericentrion, which is distinct from the Golgi complex but epicentered on the centrosome. Sustained activation of PKC (longer than 30 min) also results in sequestration of plasma membrane lipids and proteins to the same compartment, demonstrating a global effect on endocytic trafficking. This review summarizes these studies, particularly focusing on the characterization of the pericentrion as a distinct PKC-dependent subset of recycling endosomes. We also discuss emerging insights into a role for PKC as a central hub in regulating vesicular transport pathways throughout the cell, with implications for a wide range of pathobiologic processes, e.g. diabetes and abnormal neurotransmission or receptor desensitization. Received 11 August 2006; received after revision 20 September 2006; accepted 7 November 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号