首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Calcium entry through stretch-inactivated ion channels in mdx myotubes.   总被引:18,自引:0,他引:18  
A Franco  J B Lansman 《Nature》1990,344(6267):670-673
Recent advances in understanding the molecular basis of human X-linked muscular dystrophies have come from the identification of dystrophin, a cytoskeletal protein associated with the surface membrane. Although there is little or virtually no dystrophin in affected individuals, it is not known how this causes muscle degeneration. One possibility is that the membrane of dystrophic muscle is weakened and becomes leaky to Ca2+. In muscle from mdx mice, an animal model of the human disease, intracellular Ca2+ is elevated and associated with a high rate of protein degradation. The possibility that a lack of dystrophin alters the resting permeability of skeletal muscle to Ca2+ prompted us to compare Ca2(+)-permeable ionic channels in muscle cells from normal and mdx mice. We now show that recordings of single-channel activity from mdx myotubes are dominated by the presence of Ca2(+)-permeable mechano-transducing ion channels. Like similar channels in normal skeletal muscle, they are rarely open at rest, but open when the membrane is stretched by applying suction to the electrode. Other channels in mdx myotubes, however, are often open for extended periods of time at rest and close when suction is applied to the electrode. The results show a novel type of mechano-transducing ion channel in mdx myotubes that could provide a pathway for Ca2+ to leak into the cell.  相似文献   

2.
P R Stanfield  F M Ashcroft  T D Plant 《Nature》1981,289(5797):509-511
In excitable cells, ions permeate the cell membrane through ionic channels, some of which open and close in response to changes in the potential difference across the membrane. It has been supposed that this opening and closing (or gating) process is largely independent of the permeating ion. However, we show here that the gating of the resting potassium permeability of frog skeletal muscle depends on the species of ion which carries current across the membrane. The potassium permeability investigated allows K+ to move in across the membrane more easily than out. This property is known as inward or anomalous rectification and is shared by cell membranes of skeletal muscle, egg and certain other cells. In both egg cells and skeletal muscle fibres, the group IIIB metal ion Tl+, which can replace K+ in several other systems in experimental conditions, also permeates the inward rectifier. Indeed, Tl+ is more permeant than K+ (refs 8, 9). However, when Tl+ carries current inwards across the membrane, the inward rectifier inactivates over a brief period when the membrane is hyperpolarized, whereas when K+ carries current, the permeability increases with time under hyperpolarization.  相似文献   

3.
Yuan P  Leonetti MD  Hsiung Y  MacKinnon R 《Nature》2012,481(7379):94-97
High-conductance voltage- and Ca(2+)-activated K(+) channels function in many physiological processes that link cell membrane voltage and intracellular Ca(2+) concentration, including neuronal electrical activity, skeletal and smooth muscle contraction, and hair cell tuning. Like other voltage-dependent K(+) channels, Ca(2+)-activated K(+) channels open when the cell membrane depolarizes, but in contrast to other voltage-dependent K(+) channels, they also open when intracellular Ca(2+) concentrations rise. Channel opening by Ca(2+) is made possible by a structure called the gating ring, which is located in the cytoplasm. Recent structural studies have defined the Ca(2+)-free, closed, conformation of the gating ring, but the Ca(2+)-bound, open, conformation is not yet known. Here we present the Ca(2+)-bound conformation of the gating ring. This structure shows how one layer of the gating ring, in response to the binding of Ca(2+), opens like the petals of a flower. The degree to which it opens explains how Ca(2+) binding can open the transmembrane pore. These findings present a molecular basis for Ca(2+) activation of K(+) channels and suggest new possibilities for targeting the gating ring to treat conditions such as asthma and hypertension.  相似文献   

4.
Threshold channels--a novel type of sodium channel in squid giant axon   总被引:5,自引:0,他引:5  
W F Gilly  C M Armstrong 《Nature》1984,309(5967):448-450
Sodium channels in nerve and muscle cells are functionally similar across wide phylogenetic boundaries and are usually thought to represent a single, homogeneous population that initiates the action potential at threshold and unerringly transmits it along the surface membrane. In marked contrast, many cell types are known to have several distinct potassium permeability systems. Distinguishable populations of Na channels have been reported in a few cell types, however, including denervated skeletal muscle, embryonic cardiac muscle, Purkinje cell somata and non-myelinated axons at low temperature. We report here that in squid giant axon, in standard experimental conditions, there are two functionally distinct populations of Na channels. The newly discovered population accounts for only a few per cent of the total Na permeability. The channels are selectively activated by small depolarizations and have very slow closing kinetics. Because these channels activate at voltages near the resting potential and tend to stay open for long times, they must dominate behaviour of the axon membrane in the threshold region for action potential initiation.  相似文献   

5.
N W Davies 《Nature》1990,343(6256):375-377
Since their discovery in cardiac muscle, ATP-sensitive K+(KATP) channels have been identified in pancreatic beta-cells, skeletal muscle, smooth muscle and central neurons. The activity of KATP channels is inhibited by the presence of cytosolic ATP. Their wide distribution indicates that they could have important physiological roles that may vary between tissues. In muscle cells the role of K+ channels is to control membrane excitability and the duration of the action potential. In anoxic cardiac ventricular muscle KATP channels are believed to be responsible for shortening the action potential, and it has been proposed that a fall in ATP concentration during metabolic exhaustion increases the activity of KATP channels in skeletal muscle, which may reduce excitability. But the intracellular concentration of ATP in muscle is buffered by creatine phosphate to 5-10 mM, and changes little, even during sustained activity. This concentration is much higher than the intracellular ATP concentration required to half block the KATP-channel current in either cardiac muscle (0.1 mM) or skeletal muscle (0.14 mM), indicating that the open-state probability of KATP channels is normally very low in intact muscle. So it is likely that some additional means of regulating the activity of KATP channels exists, such as the binding of nucleotides other than ATP. Here I present evidence that a decrease in intracellular pH (pHi) markedly reduces the inhibitory effect of ATP on these channels in excised patches from frog skeletal muscle. Because sustained muscular activity can decrease pHi by almost 1 unit in the range at which KATP channels are most sensitive to pHi, it is likely that the activity of these channels in skeletal muscle is regulated by intracellular protons under physiological conditions.  相似文献   

6.
J Vilven  R Coronado 《Nature》1988,336(6199):587-589
In many non-muscle cells, D-inositol 1,4,5-trisphosphate (InsP3) has been shown to release Ca2+ from intracellular stores, presumably from the endoplasmic reticulum. It is thought to be a ubiquitous second messenger that is produced in, and released from, the plasma membrane in response to extracellular receptor stimulation. By analogy, InsP3 in muscle cells has been postulated to open calcium channels in the sarcoplasmic reticulum (SR) membrane, which is the intracellular Ca2+ store that releases Ca2+ during muscle contraction. We report here that InsP3 may have a second site of action. We show that InsP3 opens dihydropyridine-sensitive Ca2+ channels in a vesicular preparation of rabbit skeletal muscle transverse tubules. InsP3-activated channels and channels activated by a dihydropyridine agonist in the same preparation have similar slope conductance and extrapolated reversal potential and are blocked by a dihydropyridine antagonist. This suggests that in skeletal muscle, InsP3 can modulate Ca2+ channels of transverse tubules from plasma membrane, in contrast to the previous suggestion that the functional locus of InsP3 is exclusively in the sarcoplasmic reticulum membrane.  相似文献   

7.
Intracellular ATP directly blocks K+ channels in pancreatic B-cells   总被引:4,自引:0,他引:4  
D L Cook  C N Hales 《Nature》1984,311(5983):271-273
It is known that glucose-induced depolarization of pancreatic B-cells is due to reduced membrane K+-permeability and is coupled to an increase in the rate of glycolysis, but there has been no direct evidence linking specific metabolic processes or products to the closing of membrane K+ channels. During patch-clamp studies of proton inhibition of Ca2+-activated K+ channels [GK(Ca)] in B-cells, we identified a second K+-selective channel which is rapidly and reversibly inhibited by ATP applied to the cytoplasmic surface of the membrane. This channel is spontaneously active in excised patches and frequently coexists with GK(Ca) channels yet is insensitive to membrane potential and to intracellular free Ca2+ and pH. Blocking of the channel is ATP-specific and appears not to require metabolism of the ATP. This ATP-sensitive K+ channel [GK(ATP)] may be a link between metabolism and membrane K+-permeability in pancreatic B-cells.  相似文献   

8.
A functional correlate for the dihydropyridine binding site in rat brain   总被引:11,自引:0,他引:11  
D N Middlemiss  M Spedding 《Nature》1985,314(6006):94-96
Calcium channels, controlling the influx of extracellular Ca2+ and hence neurotransmitter release, exist in the brain. However, drugs classed as calcium antagonists and which inhibit Ca2+ entry through voltage-activated Ca2+ channels in heart and smooth muscle, seem not to affect any aspect of neuronal function in the brain at pharmacologically relevant concentrations. Yet the dihydropyridine calcium antagonists (for example, nitrendipine) bind stereospecifically with high affinity to a recognition site on brain-cell membranes thought to represent the Ca2+ channel and consequently, the physiological relevance of these sites has been questioned. However, activation of voltage-dependent Ca2+ channels can increase cytoplasmic Ca2+ and neurotransmitter release in neuronal tissue. We show here that Bay K8644, a dihydropyridine Ca2+-channel activator, can augment K+-stimulated release of serotonin from rat frontal cortex slices and that these effects can be antagonized by low concentrations of calcium antagonists. As 3H-dihydropyridine binding to cortical membrane preparations resembles the binding in heart and smooth muscle where there are good functional correlates we conclude that the dihydropyridine binding sites in the brain represent functional Ca2+ channels that can be unmasked under certain circumstances.  相似文献   

9.
E Rios  G Brum 《Nature》1987,325(6106):717-720
The transduction of action potential to muscle contraction (E-C coupling) is an example of fast communication between plasma membrane events and the release of calcium from an internal store, which in muscle is the sarcoplasmic reticulum (SR). One theory is that the release channels of the SR are controlled by voltage-sensing molecules or complexes, located in the transverse tubular (T)-membrane, which produce, as membrane voltage varies, 'intramembrane charge movements', but nothing is known about the structure of such sensors. Receptors of the Ca-channel-blocking dihydropyridines present in many tissues, are most abundant in T-tubular muscle fractions from which they can be isolated as proteins. Fewer than 5% of muscle dihydropyridines are functional Ca channels; there is no known role for the remainder in skeletal muscle physiology. We report here that low concentrations of a dihydropyridine inhibit charge movements and SR calcium release in parallel. The effect has a dependence on membrane voltage analogous to that of specific binding of dihydropyridines. We propose specifically that the molecule that generates charge movement is the dihydropyridine receptor.  相似文献   

10.
Piskorowski R  Aldrich RW 《Nature》2002,420(6915):499-502
In many physiological systems such as neurotransmitter release, smooth muscle relaxation and frequency tuning of auditory hair cells, large-conductance calcium-activated potassium (BK(Ca)) channels create a connection between calcium signalling pathways and membrane excitability. BK(Ca) channels are activated by voltage and by micromolar concentrations of intracellular calcium. Although it is possible to open BK(Ca) channels in the absence of calcium, calcium binding is essential for their activation under physiological conditions. In the presence of intracellular calcium, BK(Ca) channels open at more negative membrane potentials. Many experiments investigating the molecular mechanism of calcium activation of the BK(Ca) channel have focused on the large intracellular carboxy terminus, and much evidence supports the hypothesis that calcium-binding sites are located in this region of the channel. Here we show that BK(Ca) channels that lack the whole intracellular C terminus retain wild-type calcium sensitivity. These results show that the intracellular C terminus, including the 'calcium bowl' and the RCK domain, is not necessary for the calcium-activated opening of these channels.  相似文献   

11.
L M Schwartz  E W McCleskey  W Almers 《Nature》1985,314(6013):747-751
1,4-Dihydropyridines are a new class of compounds believed to bind specifically and with high affinity to voltage-dependent calcium channels. They may be the first example of a ligand of use in the extraction and purification of the Ca channel. Although Ca channels and dihydropyridine receptors are found in many tissues, the richest and most convenient source is skeletal muscle. Functionally, 1,4-dihydropyridines such as nifedipine and nitrendipine block Ca channels; this effect is believed to form the basis for their clinical importance as Ca antagonists in relaxing vascular smooth muscle. But where currents through Ca channels can be measured directly, the block has required 100-1,000 times higher concentrations of dihydropyridine than necessary for the saturation of dihydropyridine binding sites. This discrepancy has remained unresolved because the study of pharmacological effects on Ca channels has required intact cells, while it has been difficult to investigate binding in other than cell-free preparations. Here we describe a method for measuring dihydropyridine binding to intact skeletal muscle and we compare our results with voltage-clamp measurements of Ca-channel block. We conclude that less than a few per cent of the binding sites in skeletal muscle represent functional Ca channels, contrary to general belief.  相似文献   

12.
T Tanabe  B A Adams  S Numa  K G Beam 《Nature》1991,352(6338):800-803
Membrane depolarization causes many kinds of ion channels to open, a process termed activation. For both Na+ channels and Ca2+ channels, kinetic analysis of current has suggested that during activation the channel undergoes several conformational changes before reaching the open state. Structurally, these channels share a common motif: the central element is a large polypeptide with four repeating units of homology (repeats I-IV), each containing a voltage-sensing region, the S4 segment. This suggests that the distinct conformational transitions inferred from kinetic analysis may be equated with conformational changes of the individual structural repeats. To investigate the molecular basis of channel activation, we constructed complementary DNAs encoding chimaeric Ca2+ channels in which one or more of the four repeats of the skeletal muscle dihydropyridine receptor are replaced by the corresponding repeats derived from the cardiac dihydropyridine receptor. We report here that repeat I determines whether the chimaeric Ca2+ channel shows slow (skeletal muscle-like) or rapid (cardiac-like) activation.  相似文献   

13.
Cell signalling requires efficient Ca2+ mobilization from intracellular stores through Ca2+ release channels, as well as predicted counter-movement of ions across the sarcoplasmic/endoplasmic reticulum membrane to balance the transient negative potential generated by Ca2+ release. Ca2+ release channels were cloned more than 15 years ago, whereas the molecular identity of putative counter-ion channels remains unknown. Here we report two TRIC (trimeric intracellular cation) channel subtypes that are differentially expressed on intracellular stores in animal cell types. TRIC subtypes contain three proposed transmembrane segments, and form homo-trimers with a bullet-like structure. Electrophysiological measurements with purified TRIC preparations identify a monovalent cation-selective channel. In TRIC-knockout mice suffering embryonic cardiac failure, mutant cardiac myocytes show severe dysfunction in intracellular Ca2+ handling. The TRIC-deficient skeletal muscle sarcoplasmic reticulum shows reduced K+ permeability, as well as altered Ca2+ 'spark' signalling and voltage-induced Ca2+ release. Therefore, TRIC channels are likely to act as counter-ion channels that function in synchronization with Ca2+ release from intracellular stores.  相似文献   

14.
H A Kolb  M J Wakelam 《Nature》1983,303(5918):621-623
The concept of purinergic neurotransmission, first proposed by Burnstock, has been confirmed in various cell types. We show here, by the patch-clamp method, that external ATP in micromolar concentrations (1-100 microM) activates cation channels in the membranes of fusion-competent myoblasts and myotubes. In cell-attached membrane patches of myoblasts and myotubes the mean number of simultaneously activated channels increases with time after external ATP application. In myoblasts only one population of channels having a mean single-channel conductance of gamma=43 pS was found, while in myotubes two populations with gamma 1=48 pS and gamma 2=20 pS were observed. Treatment of myotube membranes with acetylcholine (ACh) or carbachol resulted in two populations of channels which had conductance values and voltage-dependent mean channel lifetimes similar to those produced in response to ATP. The results show that embryonic skeletal muscle cells contain cation channels sensitive to ATP and provide evidence for a neurotransmitter-like action of ATP on these cells.  相似文献   

15.
Crystal structure and mechanism of a calcium-gated potassium channel   总被引:54,自引:0,他引:54  
Jiang Y  Lee A  Chen J  Cadene M  Chait BT  MacKinnon R 《Nature》2002,417(6888):515-522
Ion channels exhibit two essential biophysical properties; that is, selective ion conduction, and the ability to gate-open in response to an appropriate stimulus. Two general categories of ion channel gating are defined by the initiating stimulus: ligand binding (neurotransmitter- or second-messenger-gated channels) or membrane voltage (voltage-gated channels). Here we present the structural basis of ligand gating in a K(+) channel that opens in response to intracellular Ca(2+). We have cloned, expressed, analysed electrical properties, and determined the crystal structure of a K(+) channel (MthK) from Methanobacterium thermoautotrophicum in the Ca(2+)-bound, opened state. Eight RCK domains (regulators of K(+) conductance) form a gating ring at the intracellular membrane surface. The gating ring uses the free energy of Ca(2+) binding in a simple manner to perform mechanical work to open the pore.  相似文献   

16.
Kirichok Y  Krapivinsky G  Clapham DE 《Nature》2004,427(6972):360-364
During intracellular Ca2+ signalling mitochondria accumulate significant amounts of Ca2+ from the cytosol. Mitochondrial Ca2+ uptake controls the rate of energy production, shapes the amplitude and spatio-temporal patterns of intracellular Ca2+ signals, and is instrumental to cell death. This Ca2+ uptake is undertaken by the mitochondrial Ca2+ uniporter (MCU) located in the organelle's inner membrane. The uniporter passes Ca2+ down the electrochemical gradient maintained across this membrane without direct coupling to ATP hydrolysis or transport of other ions. Carriers are characterized by turnover numbers that are typically 1,000-fold lower than ion channels, and until now it has been unclear whether the MCU is a carrier or a channel. By patch-clamping the inner mitochondrial membrane, we identified a previously unknown Ca2+-selective ion channel sensitive to inhibitors of mitochondrial Ca2+ uptake. Our data indicate that this unique channel binds Ca2+ with extremely high affinity (dissociation constant < or =2 nM), enabling high Ca2+ selectivity despite relatively low cytoplasmic Ca2+ concentrations. The channel is inwardly rectifying, making it especially effective for Ca2+ uptake into energized mitochondria. Thus, we conclude that the properties of the current mediated by this novel channel are those of the MCU.  相似文献   

17.
Effects of ATP and vanadate on calcium efflux from barnacle muscle fibres   总被引:3,自引:0,他引:3  
M T Nelson  M P Blaustein 《Nature》1981,289(5795):314-316
Calcium ions carry the inward current during depolarization of barnacle muscle fibres and are involved in the contraction process. Intracellular ionized calcium ([Ca2+]i) in barnacle muscle, as in other cells, is kept at a very low concentration, against a large electrochemical gradient. This large gradient is maintained by Ca2+ extrusion mechanisms. When [Ca2+]i is below the contraction threshold, Ca2+ efflux from giant barnacle muscle fibres is, largely, both ATP dependent and external Na+ (Na+0) dependent (see also refs 5,6). When [Ca2+]i is raised to the level expected during muscle contraction (2-5 muM), most of the Ca2+ efflux from perfused fibres is Na0 dependent; as in squid axons, this Na+0-dependent Ca2+ efflux is ATP independent. Orthovanadate is an inhibitor of (Na+ + K+) ATPase and the red cell Ca2+-ATpase. We report here that vanadate inhibits ATP-promoted, Na+0-dependent Ca2+ efflux from barnacle muscle fibres perfused with low [Ca2+]i (0.2-0.5 microM), but has little effect on the Na+0-dependent, ATP-independent Ca2+ efflux from fibres with a high [Ca]i (2-5 microM). Nevertheless, ATP depletion or vanadate treatment of high [Ca2+]i fibres causes an approximately 50-fold increase of Ca2+ efflux into Ca2+-containing lithium seawater. These results demonstrate that both vanadate and ATP affect Ca2+ extrusion, including the Na+0-dependent Ca2+ efflux (Na-Ca exchange), in barnacle muscle.  相似文献   

18.
C Miller  E Moczydlowski  R Latorre  M Phillips 《Nature》1985,313(6000):316-318
The recent development of techniques for recording currents through single ionic channels has led to the identification of a K+-specific channel that is activated by cytoplasmic Ca2+. The channel has complex properties, being activated by depolarizing voltages and having a voltage-sensitivity that is modulated by cytoplasmic Ca2+ levels. The conduction behaviour of the channel is also unusual, its high ionic selectivity being displayed simultaneously with a very high unitary conductance. Very little is known about the biochemistry of this channel, largely due to the lack of a suitable ligand for use as a biochemical probe for the channel. We describe here a protein inhibitor of single Ca2+-activated K+ channels of mammalian skeletal muscle. This inhibitor, a minor component of the venom of the Israeli scorpion, Leiurus quinquestriatus, reversibly blocks the large Ca2+-activated K+ channel in a simple biomolecular reaction. We have partially purified the active component, a basic protein of relative molecular mass (Mr) approximately 7,000.  相似文献   

19.
Y Maruyama  O H Petersen  P Flanagan  G T Pearson 《Nature》1983,305(5931):228-232
Ca2+- and voltage-activated K+ channels are found in many electrically excitable cells and have an important role in regulating electrical activity. Recently, the large K+ channel has been found in the baso-lateral plasma membranes of salivary gland acinar cells, where it may be important in the regulation of salt transport. Using patch-clamp methods to record single-channel currents from excised fragments of baso-lateral acinar cell membranes in combination with current recordings from isolated single acinar cells and two- and three-cell clusters, we have now for the first time characterized the K+ channels quantitatively. In pig pancreatic acini there are 25-60 K+ channels per cell with a maximal single channel conductance of about 200 pS. We have quantified the relationship between internal ionized Ca2+ concentration [( Ca2+]i) membrane potential and open-state probability (p) of the K+ channel. By comparing curves obtained from excised patches relating membrane potential to p, at different levels of [Ca2+]i, with similar curves obtained from intact cells, [Ca2+]i in resting acinar cells was found to be between 10(-8) and 10(-7) M. In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization. The large K+ channel, which is under strict dual control by internal Ca2+ and voltage, may provide a crucial link between hormone-evoked increase in internal Ca2+ concentration and the resulting NaCl-rich fluid secretion.  相似文献   

20.
B D Gomperts 《Nature》1983,306(5938):64-66
The introduction of impermeant aqueous solutes into individual cells by microinjection has long been established but the difficulties of manipulating the cytosol composition of large populations of microscopic cells have only recently been overcome. Successful techniques include a dielectric breakdown procedure, treatment with micromolar concentrations of ATP4- (ref. 7) and also with very small (that is nonagglutinating, non-fusogenic) amounts of Sendai virus. So far, attention has been concentrated on the behaviour of the cells (generally their response to applied Ca2+ buffers) at the time when the membrane permeability lesions are open, and thus cytosol and external medium are in contact. I now report a novel technique for monitoring the state of molecular solute permeability in cell membranes and show that the lesions generated by ATP4- in the membrane of mast cells can be closed within seconds of adding Mg2+ so that a cycle of permeabilization and resealing can be used to explore the effect of foreign compounds trapped in the cytosol of effectively intact cells. I show that non-hydrolysable GTP analogues, introduced into the cytosol of mast cells, cause them to undergo exocytotic secretion in response to addition of extracellular Ca2+. This finding is discussed in the light of previous experience relating guanine nucleotide regulatory proteins as intermediaries between receptors and the transducers which they control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号