首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在Gleeble 1500热模拟机上以SS400钢为研究对象,采用冷加工+α→γ逆相变等实验工艺,研究了此变形工艺对奥氏体再结晶行为的影响以及细化母相奥氏体晶粒的方法.结果表明,由于低温大变形及快速升温同时有铁素体基体的回复、再结晶或奥氏体相变这三个相互竞争的过程发生,可得到晶粒尺寸为10-12 μm的奥氏体晶粒.  相似文献   

2.
文章研究了Cu-Al-Ni-Mn-Ti合金热弹性马氏体相变的弛豫特性.实验结果表明,母相的本征内耗随振动频率的降低而衰减,在某一临界频率下出现内耗峰.随着等温测量温度的降低,内耗峰的峰高增加,峰位降低,这说明马氏体相变前母相内部已经发生了预相变,该弛豫应归结为滞弹性弛豫.当升温速率为0.25~3.80℃/min时,滞弹...  相似文献   

3.
在Gleeble 1 5 0 0热模拟机上以SS4 0 0钢为研究对象 ,采用冷加工 +α→γ逆相变等实验工艺 ,研究了此变形工艺对奥氏体再结晶行为的影响以及细化母相奥氏体晶粒的方法 .结果表明 ,由于低温大变形及快速升温同时有铁素体基体的回复、再结晶或奥氏体相变这三个相互竞争的过程发生 ,可得到晶粒尺寸为 1 0 -1 2μm的奥氏体晶粒  相似文献   

4.
对地源热泵供热系统中,利用低谷电蓄能的相变蓄能装置进行研究,以提高供热系统的经济性.在研究中对相变材料蓄热装置结构进行改进,提高了相变材料蓄热能效.利用相变材料能量守恒原理,确定合理的边界条件,对蓄热工况的传热过程进行了三维数值模拟优化.模拟结果显示,当蓄热初始条件相同时,不同装置结构中相变材料发生相变的程度会不同,出现死区的面积也不同;结合相变材料传热特性和过程,通过改进装置结构,采用螺旋管中间连通直管段的圆柱体蓄热装置,改善了蓄热效果,解决了相变材料熔化过程存在死区的问题,相变材料熔化率由原来的72%提高到93%,蓄热总量有了明显提高.同时还对采用低谷电蓄热、高峰用能放热的经济性进行了分析.结果表明采用相变材料蓄热可充分利用谷电,节约运行成本,具有良好的经济性.  相似文献   

5.
运行于户外周期性环境条件下的热控系统在工业领域有重要应用价值,降低系统能耗和提高温控效果是其性能改进关键所在.为此,采用实验和仿真手段研究了热控系统围护结构中相变材料(PCM)对系统热控效果的影响.典型气象日研究结果表明,相较于聚苯乙烯,PCM在广州地区能显著降低系统能耗(75.4%)、目标表面温度波动幅度(76.1%)和轴向温差(56.9%),在南京和吐鲁番地区可分别降低目标表面温度波动幅度41.3%和30.6%,但对系统能耗和目标轴向温差无改善;典型气象年结果表明,PCM在广州地区同样表现出热控优势,但热控效果对控温设定点、PCM相变范围和环境温度波动有很强的依赖性,当所选PCM相变范围包含控温设定点且与环境温度波动范围一致时,PCM能最大限度提高热控效果.  相似文献   

6.
食品材料微波解冻的传热实验研究   总被引:2,自引:0,他引:2  
对食品测试材料(Tylose)的微波加热解冻的问题进行了实验研究,实验结果表明,由于微波能的影响,在解冻曲线上相变区域陕窄,潜热释放很快。同时,在加热升温阶段,内热源的作用使得中心温度的上升速率大于试件内其它部分温度的上升速率。  相似文献   

7.
空气中悬浮金属微粒子的燃烧特性   总被引:3,自引:0,他引:3  
为了揭示悬浮于空气中的金属微粒子的燃烧特性,基于金属的燃烧热、升温及相变过程的热焓,定义用以预测金属燃烧反应相态的两个比例系数Rmp和Rbp,并对一些常用金属的燃烧相态进行了分析预测.另一方面,利用装有光学扩大装置的高速摄像仪对典型金属的铝粒子和铁粒子悬浮在空气中的燃烧现象行进行实验研究,同时用扫描电镜对它们燃烧前后粒子的形态和粒径进行观察分析.实验结果表明:熔点及沸点不同的轻、重金属粒子在空气中的燃烧特性绝然不同,由实验验证得到的铁和铝微粒子的燃烧反应相态与理论预测结果一致.  相似文献   

8.
为了考察附加相变微胶囊对织物内热湿传递的影响,发展了一个新的含有相变材料的织物热湿耦合模型.模型考虑了相交区间对相变及传热过程的影响及加热/冷却率对相变材料特征温度和相变热的影响,同时也考虑到纤维对蒸气的吸附/解吸现象引起的热湿耦合作用.使用等效热容法对相变微胶囊的相变过程进行了模拟,并用控制体积法对方程进行了离散求解.计算结果与实验观测一致,表明该模型可以用来预测含有相变微胶囊织物内的热湿传递过程.  相似文献   

9.
为研究钢轨闪光对焊闪光阶段的温度场分布,建立了三维实体有限元模型.计算过程中考虑了温度对材料相变和热物理特性的影响,运用"生死"单元技术解决闪光时液体过梁爆破引起物质烧损的模拟问题,同时采用红外电视图像测温法实时测量闪光阶段温度场分布.结果表明,有限元分析结果与实验结果十分吻合,为选择和优化闪光焊焊接参数提供了重要的手段,为后续闪光焊过程顶锻阶段热力耦合过程的模拟奠定了基础.  相似文献   

10.
建立过冷度测试装置,通过绘制相变过冷曲线、差示扫描量热曲线(DSC)等,研究环境温度对无机水合盐过冷行为的影响,分析环境温度与相变过冷度、相变驱动力的关系,并提出其影响机理。研究结果表明:相变升温持续时间随环境温度升高而延长,相变开始时间随环境温度升高而延迟,相变过冷度随环境温度升高而降低;相变材料与环境发生热交换损失的热量(ΔG_E)、成核结晶部位的迁移热(Q_q)作为相变阻力,对无机水合盐过冷行为产生较大影响,导致CaCl_2·6H_2O相变过冷度随所处环境温度的升高而降低,变化幅度为0.1~19.9℃。  相似文献   

11.
提出相变蓄热型Trombe墙应用于寒冷地区气候条件下的冬季辅助供热系统,对其供热性能开展了实验测试研究。建立设置相变蓄热型Trombe墙的实验系统,对其冬季室内空气温度、室外气象参数、集热板表面温度、空气通道温度及风速进行了测试。详细分析了通风量和供热量。实验测试结果表明:相变蓄热型Trombe墙具有良好的蓄热和辅助供热特性;通过相变材料的蓄热和放热,可以有效延长空气通道的通风时间,进而实现延续供热。测试条件下,内部上风口和内部下风口可在2 h关闭,在日出后1~2 h开启时,效果较好;在全天候可累计提供日所需供热量的28. 9%,具有较好的供热效果。  相似文献   

12.
 冷却服能够为高温作业人员提供降温保护,提高人体微气候区的舒适度。分析了各种类型冷却服(气体冷却服、液体冷却服和相变冷却服)的降温方式、原理、特点及研究进展,着重阐述了相变冷却服的关键技术及发展方向:研究易塑性、耐腐蚀性的封装材料和相应的封装技术,解决液相相变材料存在的变形、泄露及水蚀问题;将纳米技术与相变材料微胶囊结合,研制作用时间长、散热良好的复合相变材料,提高相变材料的导热系数;将相变冷却技术与其他技术相结合,开发作用效果可调控的新型冷却服,同时研制可快速激活相变材料的设备或新型材料,使相变材料能够快速蓄冷。  相似文献   

13.
采用欧拉-拉格朗日两相流模型对不同过载及颗粒直径条件下的喷管内流场进行了数值模拟。分析了过载的加入和颗粒直径变化对喷管内流场的压强、温度、速度的影响。从结果分析得到:不同过载以及颗粒直径变化对喷管内部燃气压强、温度、速度的影响比较大,特别是对温度的影响尤为明显。在纯气相条件下时,燃气温度在喷管长尾段后部有明显的下降,但随着颗粒相的加入,在喉部附近以及扩张段中,两相流情况下的燃气温度高于纯气相情况下的燃气温度。  相似文献   

14.
以石蜡为相变材料、泡沫石墨为支撑结构,文章利用泡沫石墨的多孔吸附特性,采用多次真空灌注方法制备了泡沫石墨/石蜡复合相变储热材料。采用Hot Disk热常数分析仪和差示扫描量热分析(DSC)对复合相变储热材料的热性能进行了表征。结果表明,石蜡充分吸附到泡沫石墨的蜂窝状微孔中,泡沫石墨的填充极大地强化了相变材料的导热能力;复合相变储热材料的相变温度与石蜡相似,其相变潜热与基于复合材料中石蜡含量的潜热计算值相当。设计了储能过程实验,并与纯石蜡试件进行了对比;储热性能测试结果表明,复合相变储热材料的储热速率比纯石蜡有了极大的提高。  相似文献   

15.
基于两相流理论,提出了一个描述含湿氧化铝颗粒气流干燥过程的一维数学模型.模型考虑了干燥管内气固两相间的传热和传质、气固两相温度和含湿量的变化.利用Bird等所提出的努赛尔数经验公式对该气流干燥模型进行了数值计算,得到了含湿氧化铝颗粒在不同气流干燥条件下的干燥曲线.整个干燥过程的数值模拟结果与实验数据吻合得很好,可以用来预测含湿氧化铝颗粒的干燥湿度.另外,对固气比、气流温度以及气流速度对颗粒湿度沿干燥管高度变化的影响也作了计算和分析,结果表明固气比和气流温度对颗粒湿度的变化影响较大.低固气比、高气流入口温度,干燥过程颗粒湿度变化大,有利于颗粒干燥.而气流速度对颗粒湿度变化的影响则可忽略不计.  相似文献   

16.
 通过热处理工艺试验研究了38CrMoAlA钢不同淬火温度、冷却方式和回火温度对38CrMoAlA钢微观组织及力学性能的影响。结果表明,在900—1000℃淬火温度范围内,淬火温度对该钢的力学性能影响不大。不同的冷却方式因淬火介质的冷却强度不同,导致淬火后的组织不同,从而影响该钢的力学性能。回火温度对该钢的力学性能的影响较为显著,100—400℃范围内回火表现出回火脆性,在620℃回火能得到较好的强韧配合。该钢采用940℃,1h,油冷620℃,5h,油冷的热处理工艺时,可获得适宜的力学性能。  相似文献   

17.
天然气液烃(NGL)的主要成分是乙烷、丙烷、丁烷等低碳烷烃。在压力瞬变工况下,储运设备中的NGL汽液相变过程很难在瞬间达到热力学平衡状态,由此引发非平衡、非稳态的汽液两相流动。综述了NGL非平衡汽液相变机理及传热传质速率计算方法、非平衡汽液两相管流数学模型与数值模拟方法的研究进展。指出应着重开展以下三方面的研究:第一是采用实验和理论相结合的方法,探究NGL非平衡汽液相变的微观机理,建立汽液相间非稳态传热传质模型;第二是考虑非稳态传热传质过程与管道压力、温度、流速等参数之间的耦合作用,基于流体力学理论和非平衡态热力学理论,建立伴随非平衡汽液相变的NGL输送管道两相流动数学模型,研究模型的数值求解方法;第三是开发NGL输送管道仿真软件,揭示NGL汽液两相管流参数变化规律,为NGL输送管道的设计、运行和管理提供理论和技术支撑。  相似文献   

18.
针对翅片管式相变蓄热器多温位释热过程进行数值模拟,分析其多温位相变传热过程的放热特性。结果表明,蓄热器低温级相变材料温度的变化速率高于高温级相变材料温度的变化速率,这是因为蓄热器低温级制冷剂流量高于高温级制冷剂流量,且低温级制冷剂出口温度与相变材料的温差高于高温级。采用热焓法对单管蓄热器模型在第一类边界条件下的融化和凝固过程进行数值模拟,并与实验测得的数据进行对比,模拟分析蓄热器高、低温级液相率及温度变化情况,综合分析相变传热过程的蓄放热特性,为进一步优化蓄能除霜过程高、低温级能量分配提供理论基础。  相似文献   

19.
Latent functionally thermal fluids (LFTF) are a novel kind of heat storage and heat transfer fluids that include phase change microcapsule slurry and phase change emulsion (PCE). They have much greater apparent specific heats and higher heat transfer abilities in the phase change temperature range than conventional single-phase heat transfer fluids such as water. Thus they are advantageous in the field of the convective heat transfer enhancement and energy transport. In this paper, some thermal physical properties such as viscosity, fusion heat and apparent specific heat (Cp) are measured, and the influences of some factors (such as selection of surfactants, preparation method, temperature, mixing ratio of surfactants and mass concentration of phase change material) on them are discussed. The study shows that: 1) the viscosity of the PCE prepared in the present work is lower than that reported in the literature; 2) its apparent specific heat value for the phase change temperatu reregion is high and proportionally increases with the concentration of phase change material.  相似文献   

20.
机械泵两相冷却系统过热现象的实验研究   总被引:2,自引:0,他引:2  
机械泵驱动两相冷却系统是一种以机械泵为驱动力的封闭式相变传热设备。在对该系统进行研究过程中发现,当启动蒸发器热负荷时,在蒸发段出口将产生明显的过热现象,并且有较大的压力脉。通过对大量实验对与过热度有关的启动温度、流量和启动热负荷进行比较分析,得出启动温度越低,产生的过热度越大的结论:启动温度越低,启动需要的过热度相对要大;其次,热流密度越大,过热时间维持的越短;最后,从过热状态到两相状态的闪蒸过程将系统的阻力发生较大变化,流量越大压力脉冲越高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号