首页 | 本学科首页   官方微博 | 高级检索  
     

非对称振子波函数和能级方程的表示及其数值解
引用本文:郑亦庄,钟万蘅,戴显熹. 非对称振子波函数和能级方程的表示及其数值解[J]. 复旦学报(自然科学版), 1988, 0(4)
作者姓名:郑亦庄  钟万蘅  戴显熹
作者单位:温州师范学院(郑亦庄),复旦大学(钟万蘅),复旦大学(戴显熹)
摘    要:给出了非对称振子波函数和能级方程的具体表示,以及某些典型情况的能级数值和波函数的形状。对非对称振子的某些情况,其解的存在性曾是有争论的。本文由理论分析和数值计算证实:即使在这些情况下,其解也是存在的。解的具体表示和数值解可以由消发散方法和计算机求出。

关 键 词:消发散方法  本征值问题  薛定谔方程  非对称振子  抛物柱函数  数值解。

REPRESENTATION OF WAVE FUNCTION, EQUATION OF ENERGY LEVEL FOR ASYMMETRIC OSCILLATORS AND ITS NUMERICAL SOLUTIONS
Zheng Yizhuan,. REPRESENTATION OF WAVE FUNCTION, EQUATION OF ENERGY LEVEL FOR ASYMMETRIC OSCILLATORS AND ITS NUMERICAL SOLUTIONS[J]. Journal of Fudan University(Natural Science), 1988, 0(4)
Authors:Zheng Yizhuan  
Abstract:Some concrete representations of wave functions, equations of energy level,numerical values of energy levels and figures of wave functions for some typical casesof asymmetric oscillators are given. For some cases in the asymmetric oscillator pro-blem the existance of the solution had been disputed. In this paper it is shown by theo-retical analysis and numerical calculation that even in these cases the solutions doexist and the concrete representations of the exact solutions and numerical solutionscan be found by eliminating singularity approach and computer.
Keywords:eliminating singularity approach  eigenvalue problem  Schr(?)dinger equation  asymmetric oscillator  parabolic cylinder function  numerical solution.
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号