首页 | 本学科首页   官方微博 | 高级检索  
     

基于CCA的增强线性鉴别分析
引用本文:彭倩倩,陈才扣,刘永俊. 基于CCA的增强线性鉴别分析[J]. 江南大学学报(自然科学版), 2007, 6(6): 812-815
作者姓名:彭倩倩  陈才扣  刘永俊
作者单位:1. 扬州大学,信息工程学院,江苏,扬州,225009
2. 扬州大学,信息工程学院,江苏,扬州,225009;南京理工大学,计算机科学与技术学院,江苏,南京,210094
基金项目:江苏省高校自然科学基金项目(05KJB520152),江苏省博士后科研资助计划项目
摘    要:为了有效地融合Fisher线性鉴别分析与最大散度差鉴别分析所抽取的特征,得到更加全面反映原始样本的鉴别特征集,提出了基于典型相关分析的增强线性鉴别分析方法.利用Fisher线性鉴别分析和最大散度差鉴别分析方法提取两组鉴别特征,根据典型相关分析对这两组特征进行融合,获得更具鉴别力的典型鉴别特征.经过ORL标准人脸库实验,验证了所提算法的有效性.

关 键 词:线性鉴别分析  最大散度差鉴别分析  典型相关分析  特征抽取  人脸识别
文章编号:1671-7147(2007)06-0812-04
修稿时间:2007-05-10

Enhanced Linear Discriminant Analysis Based on Canonical Correlation Analysis
PENG Qian-qian,CHEN Cai-kou,,LIU Yong-jun. Enhanced Linear Discriminant Analysis Based on Canonical Correlation Analysis[J]. Journal of Southern Yangtze University:Natural Science Edition, 2007, 6(6): 812-815
Authors:PENG Qian-qian  CHEN Cai-kou    LIU Yong-jun
Affiliation:PENG Qian-qian1,CHEN Cai-kou1,2,LIU Yong-jun1
Abstract:To effectively mix the features which are extracted by Fisher linear discrininant analysis and maximum scatter difference discriminant analysis and form a feature set which can reflect the samples more comprehensive,an enhanced discriminant analysis method based on canonical correlation analysis is proposed in the paper.Fisher linear discriminant analysis(LDA) and Maximum Scatter Difference Discriminate Analysis(MSDDA) are firstly adopted to extract two sets of features in the same pattern space,respectively.The canonical correlation analysis method is then used to fuse the two sets of features obtained above and derives more effective canonical discriminant features.Finally,the extensive experiments are performed on ORL face database.The experimental results verify the effectiveness of the proposed method.
Keywords:linear discriminant analysis  maximum scatter difference discriminate analysis  canonical correlation analysis  feature extraction  face recognition
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号