首页 | 本学科首页   官方微博 | 高级检索  
     

基于全局优化方法的SAR图像快速分割算法
引用本文:刘光明,孟祥伟. 基于全局优化方法的SAR图像快速分割算法[J]. 北京理工大学学报, 2015, 35(11): 1200-1204. DOI: 10.15918/j.tbit1001-0645.2015.11.018
作者姓名:刘光明  孟祥伟
作者单位:海军航空工程学院电子信息工程系,山东,烟台 264001;91640部队,广东,湛江524064;海军航空工程学院电子信息工程系,山东,烟台 264001
基金项目:国家自然科学基金资助项目(61179016)
摘    要:为解决变分水平集分割模型能量泛函的非凸性及其易陷入局部极小值解的问题,研究变分水平集分割模型的全局优化问题.基于Aubert-Aujol (AA)去噪模型和变分水平集方法,提出一个局部统计活动轮廓模型;然后通过凸松弛技术将提出的模型转换成全局优化模型;再利用分裂Bregman技术将全局优化模型转化为两个易于计算的Shrinkage算子和Laplace算子.通过对合成图像和Envisat SAR图像的分割实验,提出的全局分割模型不仅能够快速地得到全局最小值,而且比经典模型更准确地得到图像分割边缘. 

关 键 词:SAR图像分割  变分水平集方法  凸松弛技术  分裂Bregman技术
收稿时间:2013-07-25

Fast SAR Image Segmentation Algorithm Based on Global Optimization Method
LIU Guang-ming and MENG Xiang-wei. Fast SAR Image Segmentation Algorithm Based on Global Optimization Method[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2015, 35(11): 1200-1204. DOI: 10.15918/j.tbit1001-0645.2015.11.018
Authors:LIU Guang-ming and MENG Xiang-wei
Affiliation:1.Department of Electronic and Information Engineering, Naval Aeronautical and Astronautical University, Yantai, Shandong 264001, China;Army 91640, Zhanjiang, Guangdong 524064, China2.Department of Electronic and Information Engineering, Naval Aeronautical and Astronautical University, Yantai, Shandong 264001, China
Abstract:In order to cope with the non-convexity of energy functional of variational level set segmentation model and its easily getting stuck in local minima, a global optimization problem of the variational level set segmentation model had been studied. A locally statistical active contour model (LACM) was proposed based on Aubert-Aujol (AA) denoising model and variational level set method. Then, the proposed model was transformed into a global optimization model by using convex relaxation technique. Finally, the split Bregman technique was applied to transform the global optimization model into two alternating optimization processes of Shrinkage operator and Laplace operator. The segmenting experiments of synthetic images and Envisat SAR images show that, the proposed globally segmentation model can not only obtain a stationary global minimum quickly, but also get the image segmentation boundary more accurately than classic models.
Keywords:SAR image segmentation  variational level set method  convex relaxation technique  split Bregman technique
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号