首页 | 本学科首页   官方微博 | 高级检索  
     

基于比率的两种群捕食者-食饵系统的周期解
引用本文:董士杰,朱玉峻,郭彦平. 基于比率的两种群捕食者-食饵系统的周期解[J]. 河北科技大学学报, 2004, 25(1): 1-5
作者姓名:董士杰  朱玉峻  郭彦平
作者单位:军械工程学院基础部,河北,石家庄,050003;河北师范大学数学与信息学院,河北,石家庄,050016;河北科技大学理学院,河北,石家庄,050018
基金项目:河北省自然科学基金资助项目(603384)
摘    要:对于捕食者 食饵系统已有大量的研究工作,主要集中于解的稳定性、持久性等,关于周期性结论很少。本文研究了一类非自治的具有时滞和基于比率且有Machaelis Menten型功能性反应的两种群捕食者 食饵周期系统 x1=x1(t)(a(t)-b(t)x1(t)-c(t)x1(t)x2(t)m(t)x22(t)+x21(t)), x2=x2(t)(-d(t)+e(t)x21(t-τ)m(t)x22(t-τ)+x21(t-τ)),利用Mawhin的重合度理论和不等式技巧,找到了系统的1个先验界,并建立了这类系统正周期解的存在性判据。

关 键 词:捕食者-食饵系统  正周期解  重合度理论
文章编号:1008-1542(2004)01-0001-04
修稿时间:2003-05-01

Periodic Solutions of a Ratio-dependent Predator-prey System of Tow Species
DONG Shi-jie,ZHU Yu-jun,GUO Yan-ping. Periodic Solutions of a Ratio-dependent Predator-prey System of Tow Species[J]. Journal of Hebei University of Science and Technology, 2004, 25(1): 1-5
Authors:DONG Shi-jie  ZHU Yu-jun  GUO Yan-ping
Affiliation:DONG Shi-jie~1,ZHU Yu-jun~2,GUO Yan-ping~3
Abstract:For the predator-prey most work of study focuses on the stability and persistence while there have ever been little results about the periodicity.In this paper,we study a two-species ratio-dependent predator-prey system with time delay and Machaelis-menten type functional response _1=x_1(t)(a(t)-b(t)x_1(t)-c(t)x_1(t)x_2(t)m(t)x~2_2(t) x~2_1(t)), x_2=x_2(t)(-d(t) e(t)x~2_1(t-r)m(t)x~2_2(t-r) x~2_1(t-r)). By using Mawhin's coincidence degree thoery and technique of inequalities,we obtain a prior boundary of the system,and establish the existence result of positive periodic solution for the system.
Keywords:predator-prey system  positive periodic solution  coincidence degree theory
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号