首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波包变换的尺度自适应阈值图像降噪
引用本文:黄斌文,矫媛,张世红,张海生,何铮. 基于小波包变换的尺度自适应阈值图像降噪[J]. 科技信息, 2012, 0(7): 153-154
作者姓名:黄斌文  矫媛  张世红  张海生  何铮
作者单位:[1]海南政法职业学院信息技术系,海南海口571100 [2]海南医学院信息技术部计算机教研室,海南海口571101
摘    要:针对传统小波变换易引起图像边缘模糊的不足,研究了基于小波包变换的尺度自适应阈值图像降噪。利用小波包变换可以同时对图像的高频和低频部分进行进一步的细分,因此可以更好地保留原图像信息的优势,更进一步,克服通用阈值的缺陷,软阈值函数的构造充分考虑了不同尺度层次上的系数的不同特点,产生尺度自适应阈值。通过对加噪图像的实验可以看出,与传统方法相比,本文方法不仅降噪效果有很大的改进,而且有很好的视觉效果,峰值信噪比也有较大幅度的提高。

关 键 词:图像降噪  小波包变换  尺度层次  自适应阈值

Scale Adaptive Threshold Image De-noising Based on Wavelet Packet
HUANG Bin-wen,JIAO Yuan,ZHANG Shi-hong,ZHANG Hai-sheng,HE Zheng. Scale Adaptive Threshold Image De-noising Based on Wavelet Packet[J]. Science, 2012, 0(7): 153-154
Authors:HUANG Bin-wen  JIAO Yuan  ZHANG Shi-hong  ZHANG Hai-sheng  HE Zheng
Affiliation:1.1nformation Technology Department,Halnan Vocational College of Political Science and Law,Haikou Halnan, 571100; 2.Computer Teaching and Research Section, Information Technology department, Hainan Medical University,Haikou Hainan, 571101)
Abstract:Traditional wavelet transform will make the edge of image blurry. Aiming at this kind of disadvantage, scale adaptive threshold image de-nolsing which is based on wavelet packet transform is researched. Low frequency part and high frequency part can be decomposed at the same time by wavelet packet transform, so it can retain original image information better. This advantage is utilized and furthermore, the shortcoming of general threshold is overcome. The construction of soft threshold considers the different characteristic of the coefficients in different scales. Therefore, scale adaptive threshold is produced. Via the experiment on noisy image, we can see that compared with traditional methods, our method not only greatly improve the effect of de-noising, but also gain good visual effect. The peak signal to noise ratio is also enhanced.
Keywords:Image de-noising  Wavelet packet transform  Scale layer  Adaptive threshold
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号