首页 | 本学科首页   官方微博 | 高级检索  
     

用高阶导数对自然数方幂和相关问题的研究
引用本文:赵新华,代国伟. 用高阶导数对自然数方幂和相关问题的研究[J]. 云南民族大学学报(自然科学版), 2010, 19(6). DOI: 10.3969/j.issn.1672-8513.2010.06.017
作者姓名:赵新华  代国伟
作者单位:1. 中国农业银行三门峡分行,河南,三门峡,472000
2. 西北师范大学,数学与信息科学学院,甘肃,兰州,730070
摘    要:利用ekx和(ex-1)k的高阶导数的性质,简捷地推导出了自然数方幂和的2种形式的求和公式,得到了2个Bernoulli数的确切公式.所得到的结果推广了传统自然数方幂和的相关结论.

关 键 词:自然数的方幂和  高阶导数  第2类Stirling数  Bernoulli数  莱布尼茨公式  

Study on the Power Sum of Natural Numbers with Higher Order Derivative
ZHAO Xin-hua,DAI Guo-wei. Study on the Power Sum of Natural Numbers with Higher Order Derivative[J]. Journal of Yunnan Nationalities University:Natural Sciences Edition, 2010, 19(6). DOI: 10.3969/j.issn.1672-8513.2010.06.017
Authors:ZHAO Xin-hua  DAI Guo-wei
Affiliation:ZHAO Xin-hua1,DAI Guo-wei2(1.Sanmenxia Branch,Agricultural Bank of China,Sanmenxia 472000,China,2.College of Mathematics and Information Science,Northwest Normal University,Lanzhou 730070,China)
Abstract:Using the properties of the higher order derivative of ekx and(ex-1)k,two summation formulas for the power sum of natural numbers were established and two explicit formulas for Bemoulli numbers were obtained,which is a generalization of the traditional power sum of natural numbers.
Keywords:power sum of natural numbers  higher order derivative  Stirling numbers of the second kind  Bernoulli number  Leibniz's formula  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号