首页 | 本学科首页   官方微博 | 高级检索  
     

面向各向异性3D-MRI图像超分辨率 重建的ESRGAN网络
引用本文:张建,贾媛媛,贺向前,韩宝如,祝华正,杜井龙. 面向各向异性3D-MRI图像超分辨率 重建的ESRGAN网络[J]. 重庆大学学报(自然科学版), 2022, 45(5): 114-124. DOI: 10.11835/j.issn.1000-582X.2022.05.011
作者姓名:张建  贾媛媛  贺向前  韩宝如  祝华正  杜井龙
作者单位:重庆医科大学 医学信息学院,重庆 400016,重庆医科大学 医学信息学院,重庆 400016;重庆医科大学 医学数据研究院,重庆 400016,重庆科技学院 智能技术与工程学院,重庆 401331
基金项目:重庆市自然科学基金资助项目;重庆市教委科学技术研究项目;重庆医科大学智慧医学项目;国家自然科学基金;重庆市教育委员会科学技术研究计划青年资助项目
摘    要:高分辨率磁共振图像(MRI, magnetic resonance images)能够提高疾病诊断精度,但高分辨率MRI图像的获取十分困难。基于深度学习的图像超分辨率(SR, super resolution)技术可有效地提高图像分辨率。近年来,生成对抗网络(GANs, generative adversarial networks)为3D-MRI图像SR重建提供了新思路。相较于传统的基于深度卷积神经网络(DCNN, deep convolutional neural network)的SR算法,GANs网络以人类视觉机制为目标,且引入判别函数,使重建3D-MRI图像更接近真实图像。研究采用增强超分辨率生成对抗网络(ESRGAN, enhanced super-resolution generative adversarial networks)对3D-MRI图像进行SR重建;并利用3D-MRI图像的跨层面自相似性,将重建任务降维到2D,在保证重建效果的基础上,减少了网络训练时间和内存需求。通过与其他传统算法和基于DCNN算法对比实验表明,提出的算法能够进一步提高3D-MRI图像的视觉...

关 键 词:磁共振成像  生成对抗网络  超分辨率重建
收稿时间:2020-10-12

ESRGAN network for super-resolution reconstruction of anisotropic 3D-MRI images
ZHANG Jian,JIA Yuanyuan,HE Xiangqian,HAN Banru,ZHU Huazheng,DU Jinglong. ESRGAN network for super-resolution reconstruction of anisotropic 3D-MRI images[J]. Journal of Chongqing University(Natural Science Edition), 2022, 45(5): 114-124. DOI: 10.11835/j.issn.1000-582X.2022.05.011
Authors:ZHANG Jian  JIA Yuanyuan  HE Xiangqian  HAN Banru  ZHU Huazheng  DU Jinglong
Affiliation:College of Medical Informatics, Chongqing Medical University, Chongqing 400016, P. R. China;College of Medical Informatics, Chongqing Medical University, Chongqing 400016, P. R. China;Medical Data Science Academy, Chongqing Medical University, Chongqing 400016, P. R. China;College of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
Abstract:High-resolution(HR) magnetic resonance images (MRI) can improve the accuracy of disease diagnosis, but it is very difficult to obtain high-resolution MRI. Image super-resolution (SR) technology based on deep learning can effectively improve image resolution. In recent years, the generative adversarial networks (GANs) have provided new ideas for 3D-MRI SR reconstruction. Compared with the traditional SR algorithm based on deep convolutional neural network (DCNN), the GANs network targets the human visual mechanism and introduces a discriminant function to make the reconstructed 3D-MRI closer to the real image. We introduced the enhanced super-resolution generative adversarial network (ESRGAN) to perform SR reconstruction of 3D-MRI, and used the cross-layer self-similarity of 3D-MRI to reduce the dimensionality of the reconstruction task to 2D. On the basis of ensuring the reconstruction effect, the proposed method can reduce network training time and memory requirements. Compared with other traditional algorithms and DCNN-based techniques, experimental results show that our proposed method can further improve the visual quality of SR 3D-MRI.
Keywords:magnetic resonance imaging  generative adversarial network  super-resolution reconstruction
本文献已被 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号