首页 | 本学科首页   官方微博 | 高级检索  
     

重心插值配点法求解Cahn-Hilliard方程
引用本文:邓杨芳,黄蓉,翁智峰. 重心插值配点法求解Cahn-Hilliard方程[J]. 华侨大学学报(自然科学版), 2022, 43(1): 135-144. DOI: 10.11830/ISSN.1000-5013.202011026
作者姓名:邓杨芳  黄蓉  翁智峰
作者单位:华侨大学 数学科学学院, 福建 泉州 362021
基金项目:国家自然科学基金资助项目(11701197);;中央高校基本科研业务费专项资金资助项目(ZQN-702);
摘    要:对Cahn-Hilliard方程中的时、空方向均采用重心插值配点格式(重心Lagrange插值配点格式和重心有理插值配点格式)进行离散,非线性项采用一般迭代法,导出离散的线性代数方程组,并给出重心Lagrange插值的逼近误差估计.数值算例表明:两种重心插值配点格式均具有高精度,且满足能量递减规律.

关 键 词:Cahn-Hilliard方程  重心插值配点格式  迭代格式  能量递减

Barycentric Interpolation Collocation Method for Cahn-Hilliard Equation
DENG Yangfang,HUANG Rong,WENG Zhifeng. Barycentric Interpolation Collocation Method for Cahn-Hilliard Equation[J]. Journal of Huaqiao University(Natural Science), 2022, 43(1): 135-144. DOI: 10.11830/ISSN.1000-5013.202011026
Authors:DENG Yangfang  HUANG Rong  WENG Zhifeng
Affiliation:School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
Abstract:Barycentric interpolation collocation schemes(barycentric Lagrange interpolation collocation scheme and barycentric rational interpolation collocation scheme)are used to discretize both in time and in space for Cahn-Hilliard equation. The general iteration method is used for the nonlinear term, which derives the discrete linear algebraic equations. Moreover, the error estimation of barycentric Lagrange interpolation method is given. Numerical examples show the high accuracy and the law of energy decline satisfied to the two collocation schemes.
Keywords:Cahn-Hilliard equation  barycentric interpolation collocation scheme  iterative scheme  energy decline
本文献已被 万方数据 等数据库收录!
点击此处可从《华侨大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华侨大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号