首页 | 本学科首页   官方微博 | 高级检索  
     

Euler—Lagrange方程的高精度计算方法
引用本文:王加霞,黄健飞,赵维加. Euler—Lagrange方程的高精度计算方法[J]. 青岛大学学报(自然科学版), 2008, 21(1): 22-26
作者姓名:王加霞  黄健飞  赵维加
作者单位:青岛大学数学科学学院,青岛,266071
摘    要:Euler—Lagrange方程是多体系统动力学的基本方程之一,是高指标的强非线性微分代数方程组。利用零空间方法对Euler—Lagrange方程作简化处理,然后利用高精度谱积分对得到的微分代数方程组作数值离散,形成配置离散格式。针对高阶微分代数方程的离散方程组的病态问题,采用预条件技术改善了方程组的求解条件,然后利用Newton—Krylov方法迭代求解。这种求解技术可以得到任意阶精度且A-稳定算法,并且采用预条件技巧极大的降低了计算的复杂性。

关 键 词:Euler—Lagrange方程  微分代数方程组  谱积分  Newton—Krylov方法  预处理
文章编号:1006-1037(2008)01-0022-05
修稿时间:2007-09-12

A Algorithm of High Precision for Euler-Lagrange Equations
WANG Jia-xia,HUANG Jian-fei,ZHAO Wei-jia. A Algorithm of High Precision for Euler-Lagrange Equations[J]. Journal of Qingdao University(Natural Science Edition), 2008, 21(1): 22-26
Authors:WANG Jia-xia  HUANG Jian-fei  ZHAO Wei-jia
Affiliation:(College of Mathematics, Qingdao University, Qingdao 266071, China)
Abstract:Euler-Lagrange equation, a fundamental equation widely used in scientific study and technical problems, is a large nonlinear high index DAE. First, the Euler-Lagrange equation is simplified by null space technique. Second, by using a high precise spectral integral and a numerical method of high precision, the Euler-I.agrange equation is discretized into a collocation formula. Since the discretized equation systems of high index DAE is an ill-conditioned problem, preconditioning techniques are adopted to improve the condition of the systems. Newton-Krylov schemes is applied to solve the systems. The new algorithm is A-stable, can reach machine accuracy, and requires modest computational expenses due to our preconditioned techniques.
Keywords:Euler-Lagrange equation   DAE   spectral integral   Newton-Krylov method  preconditioning
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号