首页 | 本学科首页   官方微博 | 高级检索  
     

基于注意力机制与多尺度特征融合的行人重识别方法
引用本文:宋晓茹,杨佳,高嵩,陈超波,宋爽. 基于注意力机制与多尺度特征融合的行人重识别方法[J]. 科学技术与工程, 2022, 22(4): 1526-1533
作者姓名:宋晓茹  杨佳  高嵩  陈超波  宋爽
作者单位:西安工业大学电子信息工程学院,西安710021
基金项目:陕西省重点研发计划(2021GY-287);西安工业大学大学生创新创业训练计划项目(18040101128)
摘    要:针对行人重识别中因遮挡、姿态变化使模型特征无法充分表达行人信息的问题,提出了基于注意力机制与多尺度特征融合的行人重识别方法.首先使用改进的骨干网络R-ResNet50提取图像特征;其次,抽取网络不同尺度的特征层嵌入注意力机制DANet,使模型更关注于重点信息;最后,对提取出的关键特征进行多尺度特征融合,实现特征间的优势...

关 键 词:行人重识别  注意力机制  多尺度特征融合  多损失函数策略
收稿时间:2021-05-06
修稿时间:2021-11-05

Person re-identification method based on attention mechanism and multi-scale feature fusion
Song Xiaoru,Yang Ji,Gao Song,Chen Chaobo,Song Shuang. Person re-identification method based on attention mechanism and multi-scale feature fusion[J]. Science Technology and Engineering, 2022, 22(4): 1526-1533
Authors:Song Xiaoru  Yang Ji  Gao Song  Chen Chaobo  Song Shuang
Affiliation:Xi''an Technological University,School of Electronic Information Engineering,;Xi''an Technological University,School of Electronic Information Engineering,
Abstract:For the problem that model features cannot fully express the person information due to occlusion and posture change in person re-identification, the person re-identification method based on the attention mechanism and multi-scale features fusion is proposed. In this method, firstly the improved backbone network (R-ResNet50) was used to extract image features; secondly, the feature layers of the network at different scales was extracted to embed in the attention mechanism (DANet), so that the model paid more attention to the key information; finally, the extracted key features were fused with multi-scale features to achieve complementary advantages among features, and the multi-loss function strategy of cross entropy loss, difficult sample triplet loss and center loss was used to train the network model. The experimental results show that the Rank-1 and mAP of this method on the Market1501 and DukeMTMC-ReID dataset are 92.7%, 80.4% and 86.4%, 71.0% respectively, so the features extracted from the model are more discriminant and the recognition rate is higher.
Keywords:Person re-identification   Attention mechanism   Multi-scale feature fusion   Multi-loss function strategy
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号