首页 | 本学科首页   官方微博 | 高级检索  
     

结合加权子空间和相似度度量学习的人脸验证方法研究
作者姓名:汤红忠  张小刚  陈华  李骁  王翔
作者单位:(1.湖南大学 电气与信息工程学院, 湖南 长沙410082; 2. 湘潭大学 信息工程学院, 湖南 湘潭411105; 3. 湖南大学 信息科学与工程学院, 湖南 长沙410082)
摘    要:在无约束条件下,人脸表情、姿态、光照以及背景等复杂因素可能导致人脸图像的类内变化大于类间变化.针对如何降低较大的类内变化对人脸验证研究的影响,本文结合加权子空间,提出了一种带先验相似性和先验距离约束的相似度度量学习方法.首先,利用类内人脸对样本,学习带权重的类内协方差矩阵,通过加权子空间的投影,从人脸图像中获得鲁棒性的人脸特征表达;其次,利用样本对的相似性与差异性,建立了带先验相似性和先验距离约束的相似度度量学习模型,优化后的度量矩阵可以有效提高特征向量的类内鲁棒性和类间判别性;最后,利用优化的度量矩阵计算人脸对的相似度.在LFW(Labeled Faces in the Wild)数据集的实验验证了所提模型的有效性,与其它同类相似度度量学习方法相比,优化的度量矩阵更能准确地评估人脸间的相似性,并在受限训练集上取得了91.2%的识别率.

关 键 词:类内变化  加权子空间  相似度度量学习  人脸验证
本文献已被 CNKI 等数据库收录!
点击此处可从《湖南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号