首页 | 本学科首页   官方微博 | 高级检索  
     

基于区分矩阵的属性约简算法改进策略
引用本文:王慧,王京,张彩云. 基于区分矩阵的属性约简算法改进策略[J]. 武汉科技大学学报(自然科学版), 2011, 34(2)
作者姓名:王慧  王京  张彩云
作者单位:1. 北京科技大学信息工程学院,北京,100083;中国人民公安大学信息安全工程系,北京,100038
2. 北京科技大学信息工程学院,北京,100083
基金项目:国家高技术研究发展计划(863计划)资助课题(2009AA04Z136)
摘    要:针对大容量数据表构造的区分矩阵过于庞大致使属性约简算法效率低的问题,引入置信度和支持度,提取大型数据库中的高概率事件,重新构造决策数据表,并在构造区分矩阵过程中剔除重复项和包含项,结果使得比较次数减少、存储空间节省、约简效率提高。

关 键 词:决策表  区分矩阵  属性频度  属性约简  

Improvement of attribute reduction algorithm based on discernibility matrix
Wang Hui,Wang Jing,Zhang Caiyun. Improvement of attribute reduction algorithm based on discernibility matrix[J]. Journal of Wuhan University of Science and Technology(Natural Science Edition), 2011, 34(2)
Authors:Wang Hui  Wang Jing  Zhang Caiyun
Affiliation:Wang Hui1,2,Wang Jing1,Zhang Caiyun1 (1.School of Information Engineering,University of Science and Technology Beijing,Beijing 100083,China,2.Department of Information Security,Chinese People's Public Security University,Beijing 100038,China)
Abstract:In knowledge system of large database,large discernibility matrix reduces efficiency of attribute reduction algorithm.To solve this problem,confidence and support are introduced to reconstruct the decision table by extracting high probability events of a large database.In the reduction algorithm based on discernibility matrix attribute,the duplicates and contains items are removed to reduce comparison times.As a result,the efficiency of attribute reduction algorithm is improved and the storage space is save...
Keywords:decision table  discernibility matrix  attribute frequency  attribute reduction  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号