首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21.
Authors:C Shou  C L Farnsworth  B G Neel  L A Feig
Institution:Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111.
Abstract:The stimulation of a variety of cell surface receptors promotes the accumulation of the active, GTP-bound form of Ras proteins in cells. This is a critical step in signal transduction because inhibition of Ras activation by anti-Ras antibodies or dominant inhibitory Ras mutants blocks many of the effects of these receptors on cellular function. To reach the active GTP-bound state, Ras proteins must first release bound GDP. This rate-limiting step in GTP binding is thought to be catalysed by a guanine-nucleotide-releasing factor (GRF). Here we report the cloning of complementary DNAs from a rat brain library that encode a approximately 140K GRF for Ras p21 (p140Ras-GRF). Its carboxy-terminal region is similar to that of CDC25, a GRF for Saccharomyces cerevisiae RAS. This portion of Ras-GRF accelerated the release of GDP from RasH and RasN p21 in vitro, but not from the related RalA, or CDC42Hs GTP-binding proteins. A region in the amino-terminal end of Ras-GRF is similar to both the human breakpoint cluster protein, Bcr, and the dbl oncogene product, a guanine-nucleotide-releasing factor for CDC42Hs. An understanding of Ras-GRF function will enhance our knowledge of the many signal transduction pathways mediated by Ras proteins.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号