摘 要: | 在一定条件下,研究了广义Taylor中值定理中间点函数的可微性.设I是R上一区间,a∈I是区间I的左端点,函数f,g∶I→R满足条件:(i)在区间I上有n阶连续导数且g~(n)(x)≠0,(ii)存在实数α0,使limx→a~+(f~(n)(x)-f~(n)(a)/(x-a)~α=A,limx→a~+(g~(n)(x)-g~(n)(a))/(x-a)~α=B,(iii)f~(n)(a)B≠Ag~(n)(a),其中A,B是常数,则广义Taylor中值定理中间点函数c(x)在点a可微且c~(1)=(n!Γ(α + 1)/Γ(n+α + 1))~(1/α).该结果丰富了数学分析中值定理理论.
|