首页 | 本学科首页   官方微博 | 高级检索  
     

考虑建成环境交互影响的共享单车需求预测
作者姓名:魏晋  安实  张炎棠
作者单位:上海市政工程设计研究总院集团第十市政设计院有限公司;哈尔滨工业大学
基金项目:国家自然科学基金(52272332);国家自然科学基金青年科学(72201080)
摘    要:共享单车的发展有利于交通的节能减排绿色发展。建成环境是影响共享单车出行需求的重要因素,然而很少有学者探究考虑其交互作用。为了准确分析建成环境中各影响因素的交互作用以达到精确预测共享单车出行需求的目的,本文使用了深圳市共享单车出行数据、兴趣点数据(point of interest,POI)、路网数据和公交线路数据等多源数据,采用梯度提升决策树(Gradient Boosting Decision Tree,GBDT)模型预测共享单车出行需求,并与BP(Back Propagation)神经网络模型预测结果进行比较;最后借助SHAP(SHapley Additive explanation)方法解释GBDT模型中各种影响因子对共享单车出行需求产生的影响,并分析各影响因素及其交互作用。实验结果表明:GBDT模型预测结果平均绝对误差为0.683,均方根误差为0.728,较BP神经网络模型预测准确性更高;通过SHAP方法发现自行车道密度、公交站点数等交通属性因素对于共享单车出行需求作用明显,土地利用中土地利用混合度不是简单线性作用且不同POI间存在复杂交互关系。可见通过借助GBDT模型和SHAP方法可以用来共享单车出行需求预测以及影响因素分析,从而为共享单车发展提出改善建议。

关 键 词:共享单车   需求预测   POI数据   梯度提升决策树   SHAP
收稿时间:2023-01-29
修稿时间:2023-07-05
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号