首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultra-broadband semiconductor laser
Authors:Gmachl Claire  Sivco Deborah L  Colombelli Raffaele  Capasso Federico  Cho Alfred Y
Institution:Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA. cg@lucent.com
Abstract:The fundamental mechanism behind laser action leads in general only to narrowband, single-wavelength emission. Several approaches for achieving spectrally broadband laser action have been put forward, such as enhancing the optical feedback in the wings of the gain spectrum, multi-peaked gain spectra, and the most favoured technique at present, ultrashort pulse excitation. Each of these approaches has drawbacks, such as a complex external laser cavity configuration, a non-flat optical gain envelope function, or an inability to operate in continuous mode, respectively. Here we present a monolithic, mid-infrared 'supercontinuum' semiconductor laser that has none of these drawbacks. We adopt a quantum cascade configuration, where a number of dissimilar intersubband optical transitions are made to cooperate in order to provide broadband optical gain from 5 to 8 microm wavelength. Laser action with a Fabry-Pérot spectrum covering all wavelengths from 6 to 8 microm simultaneously is demonstrated with this approach. Lasers that emit light over such an extremely wide wavelength range are of interest for applications as varied as terabit optical data communications or ultra-precision metrology and spectroscopy.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号