首页 | 本学科首页   官方微博 | 高级检索  
     

基于损失加权的实时篮球裁判手势识别系统
作者姓名:李忠雨  孙浩东  李娇
作者单位:1.上海大学 微电子研究与开发中心, 上海 2004442.上海大学 机电工程与自动化学院, 上海 200444
基金项目:国家自然科学基金资助项目(52107239)
摘    要:为了方便观众更好地在观看比赛直播和录像时理解裁判手势的含义,或帮助录像分析师分析比赛视频,设计了一种实时篮球裁判手势检测与识别系统Yolov5-BR(Yolov5-Basketball Referee).首先,采用目标检测中的Yolov5算法为基础模型,对其边界框的交并比(intersection over union,IoU)损失函数完全交并比(complete intersection over union,CIoU)进行加权处理,增强预测框的鲁棒性;其次,在C3模块后加入注意力机制,产生更具分辨性的特征表示,从而提升网络识别性能;此外,在检测层头部融入自适应特征融合机制,充分利用图像高层语义信息;最后,对目标置信度损失函数进行不对等加权处理,从而提高对小目标检测的鲁棒性.在自制的裁判手势数据集上,Yolov5-BR取得了95.4%的mAP值,本地视频检测速率为55.5帧/s,外接摄像头分辨率为1 280×960,检测速率为25帧/s.实验结果表明,Yolov5-BR相对于原始模型在检测裁判手势的性能上有所提升,保持了较高的准确率、稳定性与实时性.

关 键 词:目标检测  手势识别  篮球裁判  深度学习  损失函数
收稿时间:2022-05-28
点击此处可从《上海大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号