首页 | 本学科首页   官方微博 | 高级检索  
     

双透射率成像模型与Retinex 融合的水下图像清晰化
引用本文:林森,周天飞. 双透射率成像模型与Retinex 融合的水下图像清晰化[J]. 科学技术与工程, 2021, 21(18): 7627-7634. DOI: 10.3969/j.issn.1671-1815.2021.18.033
作者姓名:林森  周天飞
作者单位:沈阳理工大学自动化与电气工程学院,沈阳110159;辽宁工程技术大学电子与信息工程学院,葫芦岛125105
基金项目:国家重点研发计划项目(No.2018YFB1403303);沈阳理工大学引进高层次人才科研支持计划(No.1010147000915)
摘    要:针对水下图像出现的颜色失真、对比度低、雾化现象等问题,提出双透射率成像模型与Retinex融合的水下图像清晰化方法.首先,采用基于改进双透射率成像模型的复原算法,用以解决图像雾化以及亮度失衡;其次,在带色彩恢复的多尺度Retinex增强算法中引入引导滤波,解决图像色偏问题;此外,引用自动色彩增强算法,有效提升对比度;最后,将三个输入图像与结合对比度、显著性、饱和性得到的对应权重图采用多尺度融合框架得到清晰化水下图像.实验结果表明,与现有新颖算法相比,所提方法可以最大程度地将多种单一算法的优势有效结合起来,水下彩色图像质量评价指标(underwater color image quality evaluation,UCIQE)均值高于各比较算法6.03%且加速鲁棒特征(speeded up robust features,SURF)特征匹配点明显提升,算法能在保留图像细节的同时有效校正色偏现象、提升图像对比度及清晰度,更符合人眼的视觉效果.

关 键 词:水下图像  成像模型  Retinex算法  权重图  图像融合
收稿时间:2020-10-20
修稿时间:2021-05-28

Underwater Image Sharpening Based on Fusion of Double Transmission Imaging Model and Retinex
Lin Sen,Zhou Tianfei. Underwater Image Sharpening Based on Fusion of Double Transmission Imaging Model and Retinex[J]. Science Technology and Engineering, 2021, 21(18): 7627-7634. DOI: 10.3969/j.issn.1671-1815.2021.18.033
Authors:Lin Sen  Zhou Tianfei
Affiliation:College of Automation and Electrical Engineering,Shenyang Ligong University,College of Electronic and Information Engineering,Liaoning Technical University
Abstract:Aiming at problems of color distortion, low contrast and atomization phenomenon in underwater images, a underwater image sharpening based on fusion of double transmission imaging model and Retinex is proposed. Firstly, the restoration algorithm based on improved double transmission underwater imaging model is used to solve the image atomization and brightness imbalance; secondly, the guidedfilter is introduced into the multi-scale Retinex enhancement algorithm with color recovery to solve the image color deviation; in addition, the automatic color enhancement algorithm is used to effectively improve the contrast; finally, each input images is fused with the corresponding weight map that obtained by combining contrast, significance and saturation to obtain a clear underwater image. Experimental results show that compared with existing novel algorithms, the proposed method can effectively combine the advantages of multiple single algorithms with the largest scale. The average value of underwater image quality evaluation index UCIQE is 6.03% higher than the comparison algorithms and the SURF feature matching points are significantly improved. It can effectively solve the problems of color, sharpness and contrast while preserving the details of the image, which is more in line with the visual effect of human eye.
Keywords:underwater image   imaging model   Retinex algorithm   weighted map   image fusion
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号