首页 | 本学科首页   官方微博 | 高级检索  
     

潜在表示学习框架下的低冗余多视图聚类算法
引用本文:袁林,杨小飞,邢志伟,万青. 潜在表示学习框架下的低冗余多视图聚类算法[J]. 重庆邮电大学学报(自然科学版), 2023, 35(1): 49-59
作者姓名:袁林  杨小飞  邢志伟  万青
作者单位:西安工程大学 理学院,西安 710600
基金项目:国家自然科学基金(61976130,12101478);陕西省重点研发计划项目(2018KW-021);陕西省自然科学基金(2022KRM170)
摘    要:基于潜在空间学习的多视图聚类研究得到了较大发展,但其通常忽略了原始数据中冗余信息的存在可能会带来不理想的聚类结果。为解决这个问题,提出一种潜在表示学习框架下的低冗余多视图聚类算法。基于k-means的方法,直接从各视图数据学习其低维表示,由于该低维表示的各个特征相互正交,学习到的低维表示通常含有较少的冗余信息。基于潜在空间的假设,各视图的低维表示可由同一个潜在表示投影得到。将两者结合,就能得到一个具有低冗余信息的统一的潜在表示。设计了一个优化算法来求解目标问题,在多个公开数据集上的实验表明了该算法的有效性。

关 键 词:多视图  聚类  k-means  潜在表示  冗余信息
收稿时间:2022-07-23
修稿时间:2022-12-05

Multi-view clustering based on latent representation learning and low redundancy
YUAN Lin,YANG Xiaofei,XING Zhiwei,WAN Qing. Multi-view clustering based on latent representation learning and low redundancy[J]. Journal of Chongqing University of Posts and Telecommunications, 2023, 35(1): 49-59
Authors:YUAN Lin  YANG Xiaofei  XING Zhiwei  WAN Qing
Affiliation:School of Science, Xi''an Polytechnic University, Xi''an 710600, P. R. China
Abstract:Multi-view clustering algorithms based on latent representation learning have gained enormous development. However, they usually neglect the redundant information in the original data, which may cause degraded clustering results. To address this issue, this paper proposes a new algorithm named multi-view clustering based on latent representation learning and low redundancy (LRLLR). First, based on k-means, a new low-dimensional representation can be learnt from each view. It follows from orthogonality that the new representations usually contain low redundant information. Second, we assume that the low-dimensional representation of each view can be projected by a shared latent representation. By combining the two parts into a unified framework, our model can produce a latent representation with low redundancy. Finally, an optimization algorithm is proposed to solve the target problem. Extensive experiments on several benchmark datasets demonstrate the effectiveness of our algorithm compared with other state-of-the-art algorithms.
Keywords:multi-view  clustering  k-means  latent representation  redundant information
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号