首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波和脊波的图像联合去噪方法
引用本文:项海林,贾建,焦李成. 基于小波和脊波的图像联合去噪方法[J]. 系统工程与电子技术, 2007, 29(5): 680-682
作者姓名:项海林  贾建  焦李成
作者单位:1. 西安电子科技大学电子工程学院,陕西,西安,710071
2. 西北大学数学系,陕西,西安,710069
摘    要:为了在图像去噪时更好地保持细节特征,提出了联合小波和脊波的阈值去噪方法。在含噪图像小波分解后,对每一尺度下三个高频子带的细节分量进行单层逆变换,得到该尺度下的细节图像。对细节图像进行脊波阈值去噪处理,然后再进行单层小波分解。用所得的高频子带分别代替先前小波分解所得的高频子带。最后对处理后的图像小波系数进行小波逆变换,得到去噪图像。实验表明,在处理具有直线特征的图像时,该方法要优于单纯的小波或脊波阈值方法。

关 键 词:图像处理  去噪  多尺度分析  小波变换  脊波变换
文章编号:1001-506X(2007)05-0680-03
修稿时间:2006-04-14

Image denoising method based on combined wavelet and ridgelet
XIANG Hai-lin,JIA Jian,JIAO Li-cheng. Image denoising method based on combined wavelet and ridgelet[J]. System Engineering and Electronics, 2007, 29(5): 680-682
Authors:XIANG Hai-lin  JIA Jian  JIAO Li-cheng
Abstract:To preserve more detail during image denoising,a combined wavelet and ridgelet approach is presented.Detail image at each scale can be obtained by inverse transformation of wavelet coefficients of a noise image.Each detail image is first denoised with ridgelet threshold method,and then decomposed with wavelet.The obtained wavelet coefficients are used as substitution for ones of the noise image.Finally,the denoised image is obtained by inverse transformation of the substitution wavelet coefficients.Experimental results showed better denoising performance for image with straight-line characters compared with only wavelets or ridgelts.
Keywords:image processing  denoising  multiresolution analysis  wavelet transformation  ridgelet transformation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号