首页 | 本学科首页   官方微博 | 高级检索  
     

一种多尺度球磨机筒体振动频谱分析与建模方法
引用本文:刘卓,柴天佑,汤健. 一种多尺度球磨机筒体振动频谱分析与建模方法[J]. 东北大学学报(自然科学版), 2015, 36(3): 305-308. DOI: 10.12068/j.issn.1005-3026.2015.03.001
作者姓名:刘卓  柴天佑  汤健
作者单位:(1. 东北大学 流程工业综合自动化国家重点实验室, 辽宁 沈阳110819; 2. 中国人民解放军92941部队, 辽宁 葫芦岛125001)
基金项目:国家自然科学基金资助项目(61020106003,61273031,61304107);“十二五”国家科技支撑计划项目(2012BAF19G00);国家博士后科学基金资助项目(2013M532118);教育部新世纪人才支持计划项目(NCET-12-0104);辽宁省优秀人才计划项目(LJQ2012020)
摘    要:针对基于传统快速傅里叶变换获得的单尺度筒体振动频谱难以有效揭示磨机研磨机理和筒体振动信号组成,以及现有文献中经验模态分解(EMD)技术预测精度低的问题,提出了基于偏最小二乘算法的多尺度筒体振动频谱分析与建模方法.该方法首先采用经验模态分解技术将筒体振动信号分解为具有不同时间尺度的内禀模态函数(IMF),接着通过傅里叶变换获得多尺度频谱,最后采用基于偏最小二乘算法的潜变量贡献率分析和选择不同尺度频谱,并建立融合不同尺度频谱的磨机负荷参数软测量模型.采用实验球磨机的实验数据仿真验证了所提方法的有效性.

关 键 词:多尺度频谱  经验模态分解(EMD)  偏最小二乘算法(PLS)  筒体振动  磨机负荷  

Multi-scale Shell Vibration Frequency Spectrum Analysis and Modeling Approach of Ball Mill
LIU Zhuo , CHAI Tian-you , TANG Jian. Multi-scale Shell Vibration Frequency Spectrum Analysis and Modeling Approach of Ball Mill[J]. Journal of Northeastern University(Natural Science), 2015, 36(3): 305-308. DOI: 10.12068/j.issn.1005-3026.2015.03.001
Authors:LIU Zhuo    CHAI Tian-you    TANG Jian
Affiliation:1. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China; 2. Unit 92941, PLA, Huludao 125001, China.
Abstract:Single-scale shell vibration frequency spectrum cannot reflect grinding mechanism of ball mill and analyze the composition of shell vibration signal. The empirical mode decomposition (EMD) based on soft sensor methods in present literature have poor prediction accuracy. Aiming at these problems, a new multi-scale shell vibration frequency spectrum analysis and modeling approach based on the partial least squares (PLS) algorithm was proposed. Firstly, the shell vibration acceleration signal was decomposed into different time-scale intrinsic mode functions (IMF) adaptively. Then, multi-scale frequency spectrum was obtained by using fast Fourier transform to different IMFs. Finally, different scale frequency spectrum was analyzed and selected by the latent variables contribution of the PLS algorithm. In addition, mill load parameters’ soft sensor model was constructed by fusing these selected multi-scale frequency spectrum. Simulation results based on experimental data of the laboratory ball mill validate the effectiveness of the proposed method.
Keywords:multi-scale frequency spectrum  empirical mode decomposition (EMD)  partial least squares (PLS) algorithm  shell vibration  mill load
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号