首页 | 本学科首页   官方微博 | 高级检索  
     

基于自动编码器的短文本特征提取及聚类研究
引用本文:刘勘,袁蕴英. 基于自动编码器的短文本特征提取及聚类研究[J]. 北京大学学报(自然科学版), 2015, 51(2): 282-288. DOI: 10.13209/j.0479-8023.2015.040
作者姓名:刘勘  袁蕴英
作者单位:中南财经政法大学信息与安全工程学院, 武汉 430074;
基金项目:国家社会科学基金(14BXW033);教育部人文社会科学基金(11YJAZH060)资助
摘    要:针对短文本的特点, 提出一种基于深层噪音自动编码器的特征提取及聚类算法。该算法利用深度学习网络, 将高维、稀疏的短文本空间向量变换到新的低维、本质特征空间。首先在自动编码器的基础上, 引入L1范式惩罚项来避免模型过分拟合, 然后添加噪音项以提高算法的鲁棒性。实验结果表明, 将提取的文本特征应用于短文本聚类, 显著提高了聚类的效果, 有效地解决了短文本空间向量的高维、稀疏问题。

关 键 词:深度学习  自动编码器  特征提取  聚类  
收稿时间:2014-07-27

Short Texts Feature Extraction and Clustering Based on Auto-Encoder
LIU Kan , YUAN Yunying. Short Texts Feature Extraction and Clustering Based on Auto-Encoder[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(2): 282-288. DOI: 10.13209/j.0479-8023.2015.040
Authors:LIU Kan    YUAN Yunying
Affiliation:School of Information and Safety Engineering, Zhongnan University of Economics and Law,Wuhan 430074;
Abstract:According to the characteristics of short texts, the authors propose a feature extraction and clustering algorithm named deep denoise sparse auto-encoder. The algorithm takes the advantage of deep learning, transforming those high-dimensional, sparse vectors into new, low-dimensional, essential ones. Firstly, L1 paradigm is introduced to avoid overfitting, and the noise is added to improve the robustness. Experimental result shows that applying extracted text features can significantly improve the effectiveness of clustering. It is a valid method to solve the high-dimensional, sparse problem in the short text vector.
Keywords:deep learning  auto-encoder  feature extraction  clustering
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号