首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inorganic polyphosphate induces accelerated tube formation of HUVEC endothelial cells
Authors:Werner E G Müller  Maximilian Ackermann  Shunfeng Wang  Meik Neufurth  Rafael Muñoz-Espí  Qingling Feng  Heinz C Schröder  Xiaohong Wang
Institution:1.ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry,University Medical Center of the Johannes Gutenberg University,Mainz,Germany;2.Institute of Functional and Clinical Anatomy,University Medical Center of the Johannes Gutenberg University,Mainz,Germany;3.Institute of Materials Science (ICMUV),Universitat de València, C/Catedràtic José,València,Spain;4.Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering,Tsinghua University,Beijing,China
Abstract:In this study, the effect of inorganic polyphosphate (polyP) on the initial phase of angiogenesis and vascularization was investigated, applying the HUVEC cell tube formation assay. PolyP is a physiological and high energy phosphate polymer which has been proposed to act as a metabolic fuel in the extracellular space with only a comparably low ATP content. The experiments revealed that polyP accelerates tube formation of human umbilical vein endothelial cells (HUVEC), seeded onto a solidified basement membrane extract matrix which contains polyP-metabolizing alkaline phosphatase (ALP) activity. This effect is abolished by co-addition of apyrase, which degrades ATP to AMP and inorganic phosphate. The assumption that ATP, derived from polyP, activates HUVEC cells leading to tube formation was corroborated by experiments showing that addition of polyP to the cells causes a strong rise of ATP level in the culture medium. Finally, we show that at a later stage of cultivation of HUVEC cells, after 3 d, polyP causes a strong enhancement of the expression of the genes encoding for the two major matrix metalloproteinases (MMPs) released by endothelial cells during tube formation, MMP-9 and MMP-2. This stimulatory effect is again abrogated by addition of apyrase together with polyP. From these results, we propose that polyP is involved either directly or indirectly in energy supply, via ALP-mediated transfer of energy-rich phosphate under ATP formation. This ATP is utilized for the activation and oriented migration of endothelial cells and for the matrix organization during the initial phases of tube formation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号