首页 | 本学科首页   官方微博 | 高级检索  
     

变系数微分Riccati方程的保辛摄动近似求解
引用本文:谭述君,钟万勰. 变系数微分Riccati方程的保辛摄动近似求解[J]. 大连理工大学学报, 2006, 46(Z1): 7-13
作者姓名:谭述君  钟万勰
作者单位:大连理工大学,工业装备结构分析国家重点实验室,辽宁,大连,116024
摘    要:区段混合能方法将微分Riccati方程的求解转化为区段混合能矩阵的计算.针对变系数情形,提出了保辛摄动方法.通过正则变换,将原时变系统分解为零阶和摄动两个Hamilton系统,而零阶系统的混合能矩阵可采用精细积分法精确求解.该方法具有极大的并行性,高效而稳定.算例验证了算法的有效性.同时还讨论了区段混合能方法与改进的Davison-Maki方法之间的关系.

关 键 词:变系数微分Riccati方程  区段混合能  保辛摄动  精细积分  改进的Davison-Maki方法
文章编号:1000-8608(2006)S-00S7-0S7
修稿时间:2006-06-24

Numerical solution of differential Riccati equation with variable coefficients via symplectic conservative perturbation method
TAN Shu-jun,ZHONG Wan-xie. Numerical solution of differential Riccati equation with variable coefficients via symplectic conservative perturbation method[J]. Journal of Dalian University of Technology, 2006, 46(Z1): 7-13
Authors:TAN Shu-jun  ZHONG Wan-xie
Abstract:By introducing the concept of interval mixed energy, the key to solve differential Riccati equation is transformed into integrating matrices of interval mixed energy efficiently. For the time-dependent case, a symplectic conservative perturbation method was presented. The original time-varying system was decomposed into two Hamiltonian systems, i. e. a zero-order system and a perturbation system, while the former one could be solved exactly by precise integration method. The proposed method can be implemented with parallel arithmetic. And its effectiveness is verified by two examples. The relations between the interval mixed energy method and the modified Davison-Maki method were also investigated.
Keywords:differential Riccati equation with variable coefficients  interval mixed energy  symplectic conservative perturbation  precise integration method  modified Davison-Maki method
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号