首页 | 本学科首页   官方微博 | 高级检索  
     

一种动态调整的改进微粒群算法
引用本文:崔志华,曾建潮. 一种动态调整的改进微粒群算法[J]. 系统工程学报, 2005, 20(6): 657-660
作者姓名:崔志华  曾建潮
作者单位:太原科技大学系统仿真与计算机应用研究所,山西,太原,030024
基金项目:教育部科学技术重点资助项目(204018).
摘    要:微粒群算法是一种新型的进化计算方法,已在许多领域得到了广泛的应用.通过对基本微粒群算法的分析,发现基本微粒群算法在计算过程中使用Lebesgue测度为0的线段进行搜索,较易得到过旱收敛现象.据此,提出了一种改进的微粒群算法,该算法在运行过程中能动态调整极限位置,从而使得每个微粒的极限位置在其所经历的最好位置与整体最好位置所形成的动态圆中分布,由于在搜索空间中使用测度为正的区域对定义域空间进行搜索,能以较大概率跳出局部最优点.实例仿真结果验证了方法的正确性和有效性.

关 键 词:微粒群算法 动态调整 测度
文章编号:1000-5781(2005)06-0657-04
收稿时间:2003-10-28
修稿时间:2003-10-282004-03-13

Dynamic adjusting modified particle swarm algorithm
CUI Zhi-hua,ZENG Jian-chao. Dynamic adjusting modified particle swarm algorithm[J]. Journal of Systems Engineering, 2005, 20(6): 657-660
Authors:CUI Zhi-hua  ZENG Jian-chao
Affiliation:Division of System Simulation and Computer Application, Taiyuan University of Science and Technology, Taiyuan 030024, China
Abstract:Particle swarm optimizer(PSO) is a new evolutionary computation method,which has been successfully applied to many fields.Through mechanism analysis of the standard particle swarm optimizer,the interval using zero Lebesque measure is used resulting premature conoergence.In terms of that a modified PSO,called dynamic adjusting modified particle swarm optimizer,is presented in the paper.It can dynamically adjust the limit position of each particle that distributes in the cycle formed by the best positions of the population and the particle,and can make the solution jump out of the local minimum point.The optimization computing of some examples is made to show that the new particle swarm optimizer is useful and simple.
Keywords:particle swarm algorithm   dynamic adjusting   measurement
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号