首页 | 本学科首页   官方微博 | 高级检索  
     

一类二维动力系统的稳定性及分叉分析
引用本文:胡军浩,晏 磊. 一类二维动力系统的稳定性及分叉分析[J]. 中南民族大学学报(自然科学版), 2014, 0(4): 105-109
作者姓名:胡军浩  晏 磊
作者单位:中南民族大学 数学与统计学学院,武汉430074
基金项目:国家自然科学基金资助项目(61374085)
摘    要:考虑一类由二阶二次差分方程简化而成的二维动力系统,运用Jury条件和稳定性理论研究其动力学行为,分析该系统两个不动点的局部稳定性及其分叉现象,利用数值模拟验证了结果的正确性.最后,应用中心流形定理确定系统不动点在发生Flip分叉时的临界稳定性.

关 键 词:动力系统  稳定性  Jury条件  分叉  中心流形定理

Stability and Bifurcation Analysis of a Class of Two-Dimensional Dynamical Systems
Hu Junhao;Yan Lei. Stability and Bifurcation Analysis of a Class of Two-Dimensional Dynamical Systems[J]. Journal of South-Central Univ for, 2014, 0(4): 105-109
Authors:Hu Junhao  Yan Lei
Affiliation:Hu Junhao;Yan Lei;College of Mathematics and Statistics,South-Central University for Nationalities;
Abstract:In this paper, we consider a class of two-dimensional dynamical system which is simplified from the second order quadratic differential equation, use the Jury condition and stability theory to study the dynamical behavior, analyze the local stability of the two different fixed points and their bifurcation phenomenon, and then we have verified the results by numerical simulations.Finally, we research the critical stability of the fixed points at flip bifurcation with center manifold theorem.
Keywords:dynamical systems   stability   Jury condition   bifurcation   center manifold theorem
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中南民族大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《中南民族大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号