首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的集群负载预测器
引用本文:薛正华,董小社,李炳毅,廖诗华. 基于BP神经网络的集群负载预测器[J]. 华中科技大学学报(自然科学版), 2007, 35(Z2): 164-167
作者姓名:薛正华  董小社  李炳毅  廖诗华
作者单位:西安交通大学,电子与信息工程学院,陕西,西安,710049
基金项目:国家高技术研究发展计划(863计划) , 中国教育科研网格计划
摘    要:针对由于作业调入调出引起的负载突变,提出了基于通知机制的反传(BP)网络和动态滑动窗口混合预测方法,设计并实现了基于神经网络的负载预测器.该方法在发生突变时,利用动态滑动窗口均值法预测并重新训练样本,训练结束后使用新的BP模型预测.其通知机制能减少预测器的样本识别时间,模型保存机制提供了无需训练样本的机会.测试结果表明,该预测器具有较好的预测精度,能够将大部分预测值的平均误差控制在5%以内,并快速适应突变事件.

关 键 词:BP神经网络  负载预测  集群管理  神经网络  集群负载  预测器  workload  cluster  server  predictor  based  突变事件  适应  快速  误差控制  预测值  预测精度  测试结果  保存机制  时间  识别  训练样本  模型
文章编号:1671-4512(2007)S2-0164-04
修稿时间:2007-07-18

BP neural network based predictor of server cluster workload
Xue Zhenghua,Dong Xiaoshe,Li Bingyi,Liao Shihua. BP neural network based predictor of server cluster workload[J]. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY.NATURE SCIENCE, 2007, 35(Z2): 164-167
Authors:Xue Zhenghua  Dong Xiaoshe  Li Bingyi  Liao Shihua
Abstract:According to the sudden change of workload caused by job join or exit,a new prediction method combining BP and dynamic sliding window average prediction method have been proposed.A neural network based predictor has been developed.When a job joined or exited,the job scheduler informed the predictor.The predictor employed dynamic sliding window average method to predict,and meanwhile,it retrained the BP model.Upon the completion of retraining,the new BP model was leveraged to predict.The notice mechanism of the combining method could reduce the time of identifying the sudden change workload.In addition,this method provided a model reservation mechanism which offered an opportunity without retraining model when jobs exited.The measurement results showed that the predictor could quickly adapt to the sudden change scenario,and the average percentage error is within 5 %.
Keywords:BP neural network  workload prediction  cluster management
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号