首页 | 本学科首页   官方微博 | 高级检索  
     

基于距离浓度的K-均值聚类算法
引用本文:刘韬,蔡淑琴,曹丰文,崔志磊. 基于距离浓度的K-均值聚类算法[J]. 华中科技大学学报(自然科学版), 2007, 35(10): 50-52
作者姓名:刘韬  蔡淑琴  曹丰文  崔志磊
作者单位:华中科技大学,管理学院,湖北,武汉,430074;苏州职业大学,电子信息工程系,江苏,苏州,215104;华中科技大学,管理学院,湖北,武汉,430074;苏州职业大学,电子信息工程系,江苏,苏州,215104
基金项目:国家自然科学基金 , 中国博士后科学基金 , 华中科技大学校科研和教改项目
摘    要:提出的基于距离浓度的K-均值聚类算法把聚类的数据对象视为抗原,聚类中心看作是免疫系统中的抗体,聚类过程表示为免疫系统不断产生抗体,识别抗原,最后产生出可以捕获抗原的最佳抗体过程.定义了抗体浓度和亲和度,使得抗体之间的距离越大,其距离浓度越小,反之则浓度越大,从而提高了算法的搜索效率.设计了抗体的期望繁殖率计算方法和克隆变异方法.仿真结果表明:该算法不仅克服了传统的K-均值聚类算法易陷入局部极小值的缺点,而且避免了对初始化选值敏感性的问题,同时也有较快的收敛速度.

关 键 词:聚类  距离浓度  免疫  算法
文章编号:1671-4512(2007)10-0050-03
修稿时间:2006-04-16

K-means clustering algorithm based distance concentration
Liu Tao,Cai Shuqin,Cao Fengwen,Cui Zhilei. K-means clustering algorithm based distance concentration[J]. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY.NATURE SCIENCE, 2007, 35(10): 50-52
Authors:Liu Tao  Cai Shuqin  Cao Fengwen  Cui Zhilei
Abstract:Using the immune recognizing principle,the data object to cluster was denoted as the antigens set,and the clustering center was the antibodies set.The clustering was the process to obtain the best antibodies to catch the antigens by producing the antibodies and recognizing the antigens unceasingly.The distance concentration and the affinity,between antibody and antigen,and between antibody and antibody,were defined about the K-means clustering.It makes that the longer the distance between antibodies is,the lower the distance concentration is,per contra.This design improves the clustering search efficiency.The antibody reproduction function was also proposed,and the antibody cloning algorithm was presented simultaneously.The experimental results show that the algorithm not only avoids the local optima and is robust to initialization,but also increases the convergence speed.
Keywords:clustering  distance concentration  immune principle  algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号