首页 | 本学科首页   官方微博 | 高级检索  
     

基于DBSCAN与HL相结合的晶圆成品率预测研究
引用本文:姚晓童,李林. 基于DBSCAN与HL相结合的晶圆成品率预测研究[J]. 上海理工大学学报, 2021, 43(2): 194-201. DOI: 10.13255/j.cnki.jusst.20200831003
作者姓名:姚晓童  李林
作者单位:上海理工大学 管理学院,上海 200093
基金项目:上海市软科学研究领域重点项目(19692104000)
摘    要:
对半导体成品率进行预测分析可有效控制产品成本,提高产品质量,而缺陷问题是导致半导体成品率损失的关键因素。因此,考虑晶圆缺陷聚集特性和数据嵌套性,研究了一种密度聚类与多水平逻辑回归相结合的受缺陷限制的成品率预测方法。首先采用密度聚类算法获取晶片缺陷模式类型;将在线缺陷数据在晶片水平进行整合,作为多水平逻辑回归模型的输入参...

关 键 词:成品率模型  密度聚类  多水平逻辑回归  嵌套结构
收稿时间:2020-08-31

Wafer yield prediction based on DBSCAN and HL
YAO Xiaotong,LI Lin. Wafer yield prediction based on DBSCAN and HL[J]. Journal of University of Shanghai For Science and Technology, 2021, 43(2): 194-201. DOI: 10.13255/j.cnki.jusst.20200831003
Authors:YAO Xiaotong  LI Lin
Affiliation:Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract:
Semiconductor yield prediction is essential to control product cost and improve product quality. Defect is the key factor leading to yield loss. Therefore, considering defect gathered characteristics and the nested structure, a yield prediction methodology was presented based on density clustering and hierarchical logit regression. A density clustering algorithm was used to obtain the pattern classification of die defects, and on-line defect data were integrated at the die level as input parameters of hierarchical logit regression model. According to the hierarchical wafer structure, nested variables were added to the model to construct random intercept effect model in lot, wafer and group layers. A non-random intercept and slope model was constructed at the product layer. Finally, according to the regression results, the main factors causing yield loss were analyzed and the corresponding improvement measures were put forward. The simulation experiment shows that the prediction accuracy of the hierarchical logit regression model is better than that of Seed''s yield model and nested structure logit model, and has higher prediction ability and feasibility.
Keywords:wafer yield model  density clustering  hierarchical logit regression  nested structure
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《上海理工大学学报》浏览原始摘要信息
点击此处可从《上海理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号